In general relativity, the Carminati–McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants.
Cabcd
{{}\starC}ijkl=(1/2)\epsilonklmnCij{}mn
Rab
Sab=Rab-
1 | |
4 |
Rgab
a} | |
{S | |
b |
a} | |
{S | |
m |
m} | |
{S | |
b |
a} | |
{S | |
b |
b} | |
{S | |
a |
The real CM scalars are:
R=
m} | |
{R | |
m |
R1=
1 | |
4 |
a} | |
{S | |
b |
b} | |
{S | |
a |
R2=-
1 | |
8 |
a} | |
{S | |
b |
b} | |
{S | |
c |
c} | |
{S | |
a |
R3=
1 | |
16 |
a} | |
{S | |
b |
b} | |
{S | |
c |
c} | |
{S | |
d |
d} | |
{S | |
a |
M3=
1 | |
16 |
SbcSef\left(CabcdCaefd+{{}\starC}abcd{{}\starC}aefd\right)
M4=-
1 | |
32 |
SagSef
c} | |
{S | |
d |
\left({Cac
W1=
1 | |
8 |
\left(Cabcd+i{{}\starC}abcd\right)Cabcd
W2=-
1 | |
16 |
\left({Cab
M1=
1 | |
8 |
SabScd\left(Cacdb+i{{}\starC}acdb\right)
M2=
1 | |
16 |
SbcSef\left(CabcdCaefd-{{}\starC}abcd{{}\starC}aefd\right)+
1 | |
8 |
iSbcSef{{}\starC}abcdCaefd
M5=
1 | |
32 |
ScdSef\left(Caghb+i{{}\starC}aghb\right)\left(CacdbCgefh+{{}\starC}acdb{{}\starC}gefh\right)
The CM scalars have the following degrees:
R
R1,W1
R2,W2,M1
R3,M2,M3
M4,M5
In the case of spherically symmetric spacetimes or planar symmetric spacetimes, it is known that
R,R1,R2,R3,\Re(W1),\Re(M1),\Re(M2)
1 | |
32 |
ScdSefCaghbCacdbCgefh