In mathematics, a Carlyle circle is a certain circle in a coordinate plane associated with a quadratic equation; it is named after Thomas Carlyle. The circle has the property that the solutions of the quadratic equation are the horizontal coordinates of the intersections of the circle with the horizontal axis. Carlyle circles have been used to develop ruler-and-compass constructions of regular polygons.
Given the quadratic equation
x2 - sx + p = 0the circle in the coordinate plane having the line segment joining the points A(0, 1) and B(s, p) as a diameter is called the Carlyle circle of the quadratic equation.[1] [2] [3]
The defining property of the Carlyle circle can be established thus: the equation of the circle having the line segment AB as diameter is
x(x − s) + (y − 1)(y − p) = 0.The abscissas of the points where the circle intersects the x-axis are the roots of the equation (obtained by setting y = 0 in the equation of the circle)
x2 - sx + p = 0.
The problem of constructing a regular pentagon is equivalent to the problem of constructing the roots of the equation
z5 − 1 = 0.One root of this equation is z0 = 1 which corresponds to the point P0(1, 0). Removing the factor corresponding to this root, the other roots turn out to be roots of the equation
z4 + z3 + z2 + z + 1 = 0.These roots can be represented in the form ω, ω2, ω3, ω4 where ω = exp (2i/5). Let these correspond to the points P1, P2, P3, P4. Letting
p1 = ω + ω4, p2 = ω2 + ω3we have
p1 + p2 = -1, p1p2 = −1. (These can be quickly shown to be true by direct substitution into the quartic above and noting that ω6 = ω, and ω7 = ω2.)So p1 and p2 are the roots of the quadratic equation
x2 + x - 1 = 0.The Carlyle circle associated with this quadratic has a diameter with endpoints at (0, 1) and (−1, −1) and center at (−1/2, 0). Carlyle circles are used to construct p1 and p2. From the definitions of p1 and p2 it also follows that
p1 = 2 cos(2/5), p2 = 2 cos(4/5).These are then used to construct the points P1, P2, P3, P4.
This detailed procedure involving Carlyle circles for the construction of regular pentagons is given below.[3]
There is a similar method involving Carlyle circles to construct regular heptadecagons.[3] The figure to the right illustrates the procedure.
To construct a regular 257-gon using Carlyle circles, as many as 24 Carlyle circles are to be constructed. One of these is the circle to solve the quadratic equation x2 + x - 64 = 0.[3]
There is a procedure involving Carlyle circles for the construction of a regular 65537-gon. However there are practical problems for the implementation of the procedure; for example, it requires the construction of the Carlyle circle for the solution of the quadratic equation x2 + x - 214 = 0.[3]
According to Howard Eves (1911–2004), the mathematician John Leslie (1766–1832) described the geometric construction of roots of a quadratic equation with a circle in his book Elements of Geometry and noted that this idea was provided by his former student Thomas Carlyle (1795–1881).[4] However while the description in Leslie's book contains an analogous circle construction, it was presented solely in elementary geometric terms without the notion of a Cartesian coordinate system or a quadratic function and its roots:[5]
In 1867 the Austrian engineer Eduard Lill published a graphical method to determine the roots of a polynomial (Lill's method).[6] If it is applied on a quadratic function, then it yields the trapezoid figure from Carlyle's solution to Leslie's problem (see graphic) with one of its sides being the diameter of the Carlyle circle. In an article from 1925 G. A. Miller pointed out that a slight modification of Lill's method applied to a normed quadratic function yields a circle that allows the geometric construction of the roots of that function and gave the explicit modern definition of what was later to be called Carlyle circle.[7]
Eves used the circle in the modern sense in one of the exercises of his book Introduction to the History of Mathematics (1953) and pointed out the connection to Leslie and Carlyle.[4] Later publications started to adopt the names Carlyle circle, Carlyle method or Carlyle algorithm, though in German speaking countries the term Lill circle (Lill-Kreis) is used as well.[8] DeTemple used in 1989 and 1991 Carlyle circles to devise compass-and-straightedge constructions for regular polygons, in particular the pentagon, the heptadecagon, the 257-gon and the 65537-gon. Ladislav Beran described in 1999 how the Carlyle circle can be used to construct the complex roots of a normed quadratic function.[9]