Carbonate chloride explained
The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of . In turn these are a part of mixed anion materials.
The carbonate chlorides do not have a bond from chlorine to carbon, however "chlorocarbonate" has also been used to refer to the chloroformates which contain the group ClC(O)O-.
Formation
Natural
Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase.[1]
Chloroartinite is found in Sorel cements exposed to air.[2]
Minerals
In 2016 27 chloride containing carbonate minerals were known.
name | formula | crystal system | space group | unit cell | density | Optics refractive index | Raman spectrum | comments | reference |
---|
Alexkhomyakovite | K6(Ca2Na)(CO3)5Cl∙6H2O | hexagonal | P63/mcm | a=9.2691, c=15.8419, V=1178.72 Z = 2 | 2.25 | uniaxial (–), ω=1.543, ε=1.476 | | | [3] |
Ashburtonite | HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl | | | | | | | | [4] |
Balliranoite | (Na,K)6Ca2(Si6Al6O24)Cl2(CO3) | hexagonal | P63 | a=12.695 c=5.325 V=743.2 Z=1 | 2.48 | uniaxial (+), ω=1.523, ε=1.525 | | | [5] |
Barstowite | Pb4(CO3)Cl6.H2O | | | | | | | | |
| Mg2(CO3)Cl(OH).3H2O | | | | | | | | |
Chlormagaluminite | (Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2·2H2O | | 6/mmm | | 1.98-2.09 | ε=1.560 ω=1.540 | | | [6] |
Davyne | | | | | | | | can substitute CO3 for SO4 | [7] |
Decrespignyite-(Y) | Y4Cu(CO3)4Cl(OH)5·2H2O | | | | | | V4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching[8] | light blue | [9] |
| Ca3CO3(OH,Cl)4.H2O | | | | | | | | |
Hanksite | Na22K(SO4)9(CO3)2Cl | hexagonal | P63/m | a = 10.46 Å c = 21.19 Å; Z = 2 | | | | | |
iowaite | Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O | | | | | | | | [10] |
Kampfite | Ba12(Si11Al5)O31(CO3)8Cl5 | monoclinic | Cc | a = 31.2329, b=5.2398, c=9.0966β = 106.933° | | uniaxial (–), nω = 1.642 nε = 1.594 | | | [11] |
Marialite | Na4(AlSi3O8)3(Cl2,CO3,SO4) | | | | | | | | |
Mineevite-(Y) | Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl | | | | | | | | [12] |
Northupite | Na3Mg(CO3)2Cl | octahedral | Fd3 | Z=16 | | 1.514 | v4 bending 714; v3 antisymmetric stretching 1554 | | [13] |
Phosgenite | Pb2CO3Cl2 | tetragonal | | a=8.15 c=8.87 | | | | | [14] |
Reederite-(Y) | Na15Y2(CO3)9(SO3F)Cl | | | | | | | | |
Sakhaite (with Harkerite) | Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28·(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O | | | | | | | | |
Scapolite | Ca3Na5[Al<sub>8</sub>Si<sub>16</sub>O<sub>48</sub>]Cl(CO3) | | P42/n | a=12.07899 c=7.583467 V=1106.443 | | | | | [15] |
Tatarskite | Ca6Mg2(SO4)2(CO3)2(OH)4Cl4•7H2O | orthorhombic | | | | Biaxial (-) nα = 1.567 nβ = 1.654 nγ = 1.722 | | | [16] |
Tunisite | NaCa2Al4(CO3)4Cl(OH)8 | tetragonal | P4/nmm | a=11.198 c=6.5637 Z=2 | | | | | |
Vasilyevite | (Hg2)10O6I3Br2Cl(CO3) | | P1 overbar | a 9.344, b 10.653, c 18.265, α=93.262 β=90.548 γ=115.422° V=1638.3 Z=2 | 9.57 | | | | | |
Artificial
name | formula | | crystal system | space group | unit cell in Å | density | comment | reference |
---|
| K5Na2Cu24(CO3)16Cl3(OH)20•12H2O | | cubic | F23 | a=15.463 V=3697.5 Z=2 | 3.044 | dark blue | [17] |
| Y8O(OH)15(CO3)3Cl | 1197.88 | hexagonal | P63 | a=9.5089 c=14.6730 Z=2 V=1148.97 | 3.462 | | [18] |
| Lu8O(OH)15(CO3)3Cl | 1886.32 | hexagonal | P63 | a=9.354 c=14.415 V=1092.3 Z=2 | 5.689 | colourless | [19] |
| Y3(OH)6(CO3)Cl | | cubic | Im3m | a=12.66 V=2032 Z=8 | 3.035 | colourless | [20] |
| Dy3(OH)6(CO3)Cl | | cubic | Im | a=12.4754 V=1941.6 Z=8 | 4.687 | colourless | |
| Er3(OH)6(CO3)Cl | | cubic | Imm | a=12.4127 V=1912.5 Z=8 | 4.857 | pink | |
| K2[Ru<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]·4H2O | 889.06 | monoclinic | P21/c | a=11.6399 b=11.7048 c=11.8493 β=119.060 V=1411.6 Z=2 | 2.092 | red-brown | [21] |
| K2[{Mg(H<sub>2</sub>O)<sub>4</sub>}2Ru<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)Cl]Cl2·2H2O | 880.58 | orthorhombic | Fmm2 | a=14.392 b=15.699 c=10.741 V=2426.8 Z=4 | 2.391 | dark brown | |
trisodium cobalt dicarbonate chloride | Na3Co(CO3)2Cl | | cubic | Fd | a=13.9959 Z=16 | 2.75 | spin-frustrated antiferromagnetic | [22] |
trisodium manganese dicarbonate chloride | Na3Mn(CO3)2Cl | | cubic | | a=14.163 | | brown | [23] |
di-magnesium hexahydrate trihydrogencarbonate chloride | Mg2(H2O)6(HCO3)3Cl | | | Rc | a=8.22215 c=39.5044 V=2312.85 Z=6 | 1.61 | decompose 125 °C | |
tripotassium tricalcium selenite tricarbonate chloride | K3Ca3(SeO3)(CO3)3Cl | 579.97 | hexagonal | P63 | a=10.543 c=7.060 V=706.0 Z=2 | 2.991 | | [24] |
| LiBa9[Si<sub>10</sub>O<sub>25</sub>]Cl7(CO3) | | | | Z=2 | 3.85 | layer silicate | [25] [26] |
| Ba3Cl4CO3 | | orthorhombic | Pnma | a=8.407, b=9.589, c=12.483 Z=4 | | | [27] |
|
Complexes
The "lanthaballs" are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La<sub>13</sub>(ccnm)<sub>6</sub>(CO<sub>3</sub>)<sub>14</sub>(H<sub>2</sub>O)<sub>6</sub>(phen)<sub>18</sub>] Cl3(CO3)·25H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La).[28] Other lanthanide cluster compounds include :(H3O)6[Dy<sub>76</sub>O<sub>10</sub>(OH)<sub>138</sub>(OAc)<sub>20</sub>(L)<sub>44</sub>(H<sub>2</sub>O)<sub>34</sub>]•2CO3•4Cl2•L•2OAc (nicknamed Dy76) and (H3O)6[Dy<sub>48</sub>O<sub>6</sub>(OH)<sub>84</sub>(OAc)<sub>4</sub>(L)<sub>15</sub>(hmp)<sub>18</sub>(H<sub>2</sub>O)<sub>20</sub>]•CO3•14Cl•2H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid.[29]
Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO<sub>3</sub>)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl<sub>2</sub>(CO<sub>3</sub>)].H2O gln=glutamine.[30] Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine)[31]
Notes and References
- Harlov. D. E.. Budzyn. B.. December 2008. The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl. AGUFM. en. 2008. V31C–2156–2156. 2008AGUFM.V31C2156H.
- Dinnebier. Robert E.. Jansen. Martin. 2008-12-01. The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl–, Containing a Magnesium-based Hetero-polycation. Zeitschrift für Naturforschung B. 63. 12. 1347–1351. 10.1515/znb-2008-1201. 196866126. 1865-7117. free.
- Pekov. Igor V.. Zubkova. Natalia V.. Yapaskurt. Vasiliy O.. Lykova. Inna S.. Chukanov. Nikita V.. Belakovskiy. Dmitry I.. Britvin. Sergey N.. Turchkova. Anna G.. Pushcharovsky. Dmitry Y.. 2019-02-21. Alexkhomyakovite, K6(Ca2Na)(CO3)5Cl∙6H2O, a new mineral from the Khibiny alkaline complex, Kola peninsula, Russia. European Journal of Mineralogy. en. 31. 1. 135–143. 10.1127/ejm/2018/0030-2798. 0935-1221. 2019EJMin..31..135P. 134451790.
- Hazen. Robert M.. Hummer. Daniel R.. Hystad. Grethe. Downs. Robert T.. Golden. Joshua J.. April 2016. Carbon mineral ecology: Predicting the undiscovered minerals of carbon. American Mineralogist. en. 101. 4. 889–906. 10.2138/am-2016-5546. 0003-004X. 2016AmMin.101..889H. 741788.
- Chukanov. Nikita V.. Zubkova. Natalia V.. Pekov. Igor V.. Olysych. Lyudmila V.. Bonaccorsi. Elena. Pushcharovsky. Dmitry YU.. 2010-03-18. Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma Vesuvio volcanic complex, Italy. European Journal of Mineralogy. en. 22. 1. 113–119. 10.1127/0935-1221/2010/0022-1983. 0935-1221. 2010EJMin..22..113C.
- Kashayev. A. A.. Feoktistov. G. D.. Petrova. S. V.. July 1983. Chlormagaluminite (Mg, Fe 2+) 4 Al 2 (OH) 12 (Cl, 1/2 CO 3) 2 ·2H 2 O-a new mineral of the manasseite-sjogrenite group. International Geology Review. en. 25. 7. 848–853. 10.1080/00206818309466774. 0020-6814. 1983IGRv...25..848K.
- BALLIRANO. PAOLO. 1998. CARBONATEGROUPSIN DAWNE:STRUCTURAL AND CRYSTAL.CHEMICAL CONSIDERATIONs. The Canadian Mineralogist. 36. 1285–1292.
- Frost. Ray L.. Palmer. Sara J.. 2011-11-15. Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5·2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite. Journal of Raman Spectroscopy. en. 42. 11. 2042–2048. 10.1002/jrs.2959. 2011JRSp...42.2042F.
- Wallwork . K. . Kolitsch . U. . Pring . A. . Nasdala . L. . Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia . Mineralogical Magazine . February 2002 . 66 . 1 . 181–188 . 10.1180/0026461026610021 . en . 0026-461X. 2002MinM...66..181W . 4820053 .
- Frost. R. L.. Erickson. K. L.. 2004. Thermal decomposition of natural iowaite. Journal of Thermal Analysis and Calorimetry. en. 78. 2. 367–373. 10.1023/B:JTAN.0000046103.00586.61. 97065830. 1388-6150.
- Web site: Kampfite: Mineral information, data and localities.. www.mindat.org. 2019-11-26.
- Book: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Harlov. Daniel E.. Aranovich. Leonid. 2018-01-30. Springer. 978-3-319-61667-4. en.
- Book: Refractive Indices of Solids. Batsanov. Stepan S.. Ruchkin. Evgeny D.. Poroshina. Inga A.. 2016-08-10. Springer. 978-981-10-0797-2. 61. en.
- Ivan Kostov, Ruslan I. Kostov. 2016. Systematics and crystal genesis of carbonate minerals. ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY "ST. IVAN RILSKI", Part I, Geology and Geophysics. 49. 111–118.
- Antao. S. M.. Hassan. I.. 2011-04-01. COMPLETE Al-Si ORDER IN SCAPOLITE Me37.5, IDEALLY Ca3Na5[Al8Si16O48]Cl(CO3), AND IMPLICATIONS FOR ANTIPHASE DOMAIN BOUNDARIES (APBs). The Canadian Mineralogist. en. 49. 2. 581–586. 10.3749/canmin.49.2.581. 2011CaMin..49..581A . 0008-4476.
- Web site: Tatarskite: Mineral information, data and localities. . www.mindat.org . 10 May 2020.
- Sokolova . Elena . Hawthorne . Frank C. . The Crystal Structure Of An Anthropogenic Cu–k–na–hydro-Hydroxyl–carbonate–chloride From Johanngeorgenstadt, Saxony, Germany . The Canadian Mineralogist . 2003 . 41 . 4 . 929–936. 10.2113/gscanmin.41.4.929 . 2003CaMin..41..929S .
- Zhang. Yiting. Long. Ying. Dong. Xuehua. Wang. Lei. Huang. Ling. Zeng. Hongmei. Lin. Zhien. Wang. Xin. Zou. Guohong. 2019. Y 8 O(OH) 15 (CO 3) 3 Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework. Chemical Communications. en. 55. 31. 4538–4541. 10.1039/C9CC00581A. 30924839. 85566544. 1359-7345.
- Cao. Liling. Song. Yunxia. Peng. Guang. Luo. Min. Yang. Yi. Lin. Chen-sheng. Zhao. Dan. Xu. Feng. Lin. Zheshuai. Ye. Ning. 2019-03-26. Refractive Index Modulates Second-Harmonic Responses in RE 8 O(CO 3) 3 (OH) 15 X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials. Chemistry of Materials. en. 31. 6. 2130–2137. 10.1021/acs.chemmater.9b00068. 107652980. 0897-4756.
- Wang. Yanyan. Han. Tian. Ding. You-Song. Zheng. Zhiping. Zheng. Yan-Zhen. 2016. Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism. Dalton Transactions. en. 45. 3. 1103–1110. 10.1039/C5DT03314D. 26660232. 1477-9226. free.
- Yang. Jian-Hui. Cheng. Ru-Mei. Jia. Yan-Yan. Jin. Jin. Yang. Bing-Bing. Cao. Zhi. Liu. Bin. 2016. Chlorine and temperature directed self-assembly of Mg–Ru 2 (ii, iii) carbonates and particle size dependent magnetic properties. Dalton Transactions. en. 45. 7. 2945–2954. 10.1039/C5DT04463D. 26750871. 1477-9226.
- Book: Fu, Zhendong. Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets. 2012. Forschungszentrum Jülich. 978-3-89336-797-9. 97–165. en.
- Nawa. Kazuhiro. Okuyama. Daisuke. Avdeev. Maxim. Nojiri. Hiroyuki. Yoshida. Masahiro. Ueta. Daichi. Yoshizawa. Hideki. Sato. Taku J.. 2018-10-18. Degenerate ground state in the classical pyrochlore antiferromagnet Na 3 Mn (CO 3) 2 Cl. Physical Review B. en. 98. 14. 144426. 10.1103/PhysRevB.98.144426. 2469-9950. 2018PhRvB..98n4426N. 1810.05126. 119245230.
- Schmitz. Dieter. 2001. Synthese, Charakterisierung und Bildungsprinzipien von sauren und neutralen Oxoselenaten(IV) und Oxoselenat(IV)-hydraten. de. 182. Fachbereich 8.
- Web site: LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure - SpringerMaterials]. materials.springer.com. 2019-11-27.
- Il'Inets. A. M.. Nevskii. N. N.. Ilyukhin. V. V.. Belov. N. V.. March 1983. A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3). SPHD. en. 28. 213. 1983SPhD...28..213I.
- Leyva-Bailen. Patricia. Vaqueiro. Paz. Powell. Anthony V.. September 2009. Ionothermal synthesis of the mixed-anion material, Ba3Cl4CO3. Journal of Solid State Chemistry. en. 182. 9. 2333–2337. 10.1016/j.jssc.2009.06.019. 2009JSSCh.182.2333L.
- Chesman. Anthony S. R.. Turner. David R.. Langley. Stuart K.. Moubaraki. Boujemaa. Murray. Keith S.. Deacon. Glen B.. Batten. Stuart R.. 2015-02-02. Synthesis and Structure of New Lanthanoid Carbonate "Lanthaballs". Inorganic Chemistry. en. 54. 3. 792–800. 10.1021/ic5016115. 25349948. 0020-1669.
- Li . Xiao-Yu . Su . Hai-Feng . Li . Quan-Wen . Feng . Rui . Bai . Hui-Yun . Chen . Hua-Yu . Xu . Jian . Bu . Xian-He . A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters . Angewandte Chemie International Edition . 22 July 2019 . 58 . 30 . 10184–10188 . 10.1002/anie.201903817. 31090998 . 155089115 .
- Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions. Shatnawi. Razan Ahmad Mahmoud. November 2013. Yarmouk University. Article.
- Book: Davidson . G. . Ebsworth . E. A. V. . Spectroscopic Properties of Inorganic and Organometallic Compounds . 2007 . Royal Society of Chemistry . 978-1-84755-506-9 . 294 . en.