Carbamic acid explained

Carbamic acid should not be confused with Carbonic acid.

Carbamic acid, which might also be called aminoformic acid or aminocarboxylic acid,[1] is the chemical compound with the formula . It can be obtained by the reaction of ammonia and carbon dioxide at very low temperatures, which also yields ammonium carbamate . The compound is stable only up to about 250 K (−23 °C); at higher temperatures it decomposes into those two gases. The solid apparently consists of dimers, with the two molecules connected by hydrogen bonds between the two carboxyl groups –COOH.[2]

Carbamic acid could be seen as both an amine and carboxylic acid, and therefore an amino acid;[3] however, the attachment of the carboxyl group –COOH directly to the nitrogen atom (without any intermediate carbon chain) makes it behave very differently from the amino acids with intermediate carbon chain. (Glycine is generally considered to be the simplest amino acid.) The hydroxyl group –OH attached to the carbon also excludes it from the amide class.

The term "carbamic acid" is also used generically for any compounds of the form RR′NCOOH, where R and R′ are organic groups or hydrogen.

Deprotonation of a carbamic acid yields a carbamate anion, the salts of which can be relatively stable. Carbamate is also a term used for esters of carbamic acids, such as methyl carbamate . The carbamoyl functional group RR′N–C(=O)– (often denoted by Cbm) is the carbamic acid molecule minus the OH part of the carboxyl.

Structure

Carbamic acid is a planar molecule.[3]

The group of carbamic acid, unlike that of most amines, cannot be protonated to an ammonium group . The zwitterionic form is very unstable and promptly decomposes into ammonia and carbon dioxide,[4] yet there is a report of its detection in ices irradiated with high-energy protons.[3]

Derivatives

Carbamic acid is formally the parent compound of several important families of organic compounds:

Carbamic acids

Many substituted carbamic acids (RHNCOOH or RR′NCOOH), can be readily synthesized by bubbling carbon dioxide through solutions of the corresponding amine (or RR′NH, respectively) in an appropriate solvent, such as DMSO or supercritical carbon dioxide.[5] These carbamic acids are generally unstable at room temperature, reverting to the parent amine and carbon dioxide.[6]

Carbamate esters

Unlike carbamic acids, carbamate esters are generally stable at room temperature as a higher state. They are prepared by reaction of carbamoyl chlorides with alcohols, the addition of alcohols to isocyanates, and the reaction of carbonate esters with ammonia.[7] Methyl carbamate and ethyl carbamate are among the simplest examples and have historically been used in the textile industry, both are now suspected carcinogens. Benzyl carbamate is also known.

Occurrence in nature

The enzyme class carbamate kinase, involved in several metabolic pathways of living organisms, catalyzes the formation of carbamoyl phosphate :

An important example of an enzyme with this activity is carbamoyl phosphate synthetase, e.g. carbamoyl phosphate synthetase I carrying out the first step of the urea cycle in order to dispose of waste ammonia.

One hemoglobin molecule can carry four molecules of carbon dioxide to the lungs as carbamate groups formed by reaction of with four terminal amine groups of the deoxy form. The resulting compound is called carbaminohaemoglobin.

Uses

Industrial

Carbamic acid is an intermediate in the industrial production of urea, which involves the reaction of carbon dioxide and ammonia.

Medical

Some carbamate esters have use as muscle relaxants, including Emylcamate, Phenprobamate, Styramate and other members of ATC code M03BA. These bind to the barbiturate site of the GABAA receptor.[8]

Insecticides

Several carbamic acid based insecticides have been developed; for example aldicarb, carbaryl, carbofuran.[9]

Chemical synthesis

An amine functional group can be protected from unwanted reactions by being formed as carbamate ester residue –NHC(=O)–OR. Hydrolysis of the ester bond then produces a carbamic acid –NHC(=O)OH, which then loses carbon dioxide yielding the desired amine.

Notes and References

  1. Web site: PubChem Compound Summary for CID 277, Carbamic acid . . 2020 . National Center for Biotechnology Information . October 10, 2020.
  2. J. B. Bossa, P. Theulé, F. Duvernay, F. Borget and T. Chiavassa (2008): "Carbamic acid and carbamate formation in NH3:CO2 ices – UV irradiation versus thermal processes". Astronomy and Astrophysics, volume 492, issue 3, pages 719-724.
  3. R. K. Khanna and M. H. Moore (1999): "Carbamic acid: molecular structure and IR spectra". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, volume 55, issue 5, pages 961-967.
  4. Y.-J. Chen, M. Nuevo, J.-M. Hsieh, T.-S. Yih, W.-H. Sun, W.-H. Ip, H.-S. Fung, S.-Y. Chiang, Y.-Y. Lee, J.-M. Chen and C.-Y. R. Wu (2007): "Carbamic acid produced by the UV/EUV irradiation of interstellar ice analogs". Astronomy and Astrophysics, volume 464, issue 1, pages 253-257.
  5. Z. J. Dijkstra, A. R. Doornbos, H. Weyten, J. M. Ernsting, C. J. Elsevier, and J. T. F. Keurentjes (2007): "Formation of carbamic acid in organic solvents and in supercritical carbon dioxide". Journal of Supercritical Fluids, volume 41, issue 1, pages 109-114.
  6. Book: Lemke, Thomas L. . 63 . Review of Organic Functional Groups: Introduction to Medicinal Organic Chemistry . 978-0-7817-4381-5 . 2003 . Lippincott, Williams & Wilkins . Philadelphia, PA .
  7. Book: 10.1002/14356007.a05_051 . Carbamates and Carbamoyl Chlorides . Ullmann's Encyclopedia of Industrial Chemistry . 2000 . Jäger . Peter . Rentzea . Costin N. . Kieczka . Heinz . 3527306730 .
  8. Book: 495 . https://books.google.com/books?id=CeibVy3-LSMC&pg=PA495 . 978-0-7817-3481-3 . Central Nervous System Depressant . John H. . Block . John M. . Beale . 2004 . Lippincott, Williams & Wilkins . Philadelphia, PA . Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry.
  9. 10.2307/3430304 . 3304999 . 1474664 . 3430304 . The Toxicologic Effects of the Carbamate Insecticide Aldicarb in Mammals: A Review . Environmental Health Perspectives . 72 . 267–281 . 1987 . Risher . John F. . Mink . Franklin L. . Stara . Jerry F. .