Capillary number explained

In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids. Alongside the Bond number, commonly denoted

Bo

, this term is useful to describe the forces acting on a fluid front in porous or granular media, such as soil.[1] The capillary number is defined as:[2] [3]

Ca=

\muV
\sigma

where

\mu

is the dynamic viscosity of the liquid,

V

is a characteristic velocity and

\sigma

is the surface tension or interfacial tension between the two fluid phases.

Being a dimensionless quantity, the capillary number's value does not depend on the system of units. In the petroleum industry, capillary number is denoted

Nc

instead of

Ca

.[4]

For low capillary numbers (a rule of thumb says less than 10−5), flow in porous media is dominated by capillary forces,[5] whereas for high capillary numbers the capillary forces are negligible compared to the viscous forces. Flow through the pores in an oil reservoir has capillary number values in the order of 10−6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity.

The capillary number plays a role in the dynamics of capillary flow; in particular, it governs the dynamic contact angle of a flowing droplet at an interface.[6]

Multiphase formulation

Multiphase flows forms when two or more partially or immiscible fluids are brought in contact.[7] The Capillary number in multiphase flow has the same definition as the single flow formulation, the ratio of viscous to surface forces but has the added(?) effect of the ratio of fluid viscosities:  

Ca=

\muV
\sigma

,

\mu
\hat{\mu
}

where

\mu

and

\hat{\mu}

are the viscosity of the continuous and the dispersed phases respectively.

Multiphase microflows are characterized by the ratio of viscous to surface forces, the capillary number (Ca), and by the ratio of fluid viscosities:

Ca=

\muV
\sigma
and
\mu
\hat{\mu
}.

See also

Notes and References

  1. https://hal.archives-ouvertes.fr/hal-02371151/document#page=4 Dynamics of viscous entrapped saturated zones in partially wetted porous media
  2. Shi. Z. . et al . Dynamic contact angle hysteresis in liquid bridges.. Colloids and Surfaces A: Physicochemical and Engineering Aspects . 2018 . 555 . 365–371. 10.1016/j.colsurfa.2018.07.004. 1712.04703 . 51916594 .
  3. Web site: Archived copy . 2 July 2013 . 24 December 2013 . https://web.archive.org/web/20131224102812/http://myweb.clemson.edu/~jsaylor/paperPdfs/aichej.2012.SaylorBounds.pdf . dead .
  4. Web site: What is Capillary Number? - Definition from Petropedia . Petropedia . 5 October 2018 . en . https://web.archive.org/web/20190327101131/https://www.petropedia.com/definition/609/capillary-number . 27 March 2019 . live.
  5. Ding, M., Kantzas, A.: Capillary number correlations for gas-liquid systems, SEP 2004-062 (2004)
  6. Book: Lambert . Pierre . Surface Tension in Microsystems: Engineering Below the Capillary Length . 2013 . Springer Science & Business Media . 9783642375521 . 8–11 . en.
  7. Günther. Axel. Jensen. Klavs F.. 2006. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip. 6. 12. 1487–1503. 10.1039/b609851g. 17203152. 1473-0197.