In mathematics, the Cameron–Martin theorem or Cameron–Martin formula (named after Robert Horton Cameron and W. T. Martin) is a theorem of measure theory that describes how abstract Wiener measure changes under translation by certain elements of the Cameron–Martin Hilbert space.
\gamman
n
Rn
n
dx
A
\gamman(A)=
1 | |
(2\pi)n/2 |
\intA\exp\left(-\tfrac12\langlex,
x\rangle | |
Rn |
\right)dx.
Here
\langle
x,x\rangle | |
Rn |
Rn
A
h\inRn
\begin{align} \gamman(A-h)&=
1 | |
(2\pi)n/2 |
\intA\exp\left(-\tfrac12\langlex-h,
x-h\rangle | \right)dx\\[4pt] &= | |
Rn |
1 | |
(2\pi)n/2 |
\intA\exp\left(
| |||||||||||
2 |
\right)\exp\left(-\tfrac12\langlex,
x\rangle | |
Rn |
\right)dx. \end{align}
So under translation through
h
\exp\left( |
| ||||||||||
2 |
\right)=\exp\left(\langlex,
h\rangle | |
Rn |
-
2\right). | |
\tfrac12\|h\| | |
Rn |
The measure that associates to the set
A
\gamman(A-h)
(Th)*(\gamman)
Th:Rn\toRn
Th(x)=x+h
d(Th)*(\gamman) | |
d\gamman |
(x)=\exp\left(\left\langleh,x\right
\rangle | |
Rn |
-\tfrac{1}{2}\|h
2 | |
\| | |
Rn |
\right).
The abstract Wiener measure
\gamma
E
i:H\toE
i(H)\subseteqE
Let
i:H\toE
\gamma:\operatorname{Borel}(E)\to[0,1]
h\inH
Th:E\toE
Th(x)=x+i(h)
(Th)*(\gamma)
\gamma
d(Th)*(\gamma) | |
d\gamma |
(x)=\exp\left(\langleh,x\rangle\sim-\tfrac{1}{2}\|h
2 | |
\| | |
H |
\right),
where
\langleh,x\rangle\sim=i(h)(x)
denotes the Paley–Wiener integral.
The Cameron–Martin formula is valid only for translations by elements of the dense subspace
i(H)\subseteqE
E
If
E
\mu
E
E
\mu
In fact,
\gamma
v
v\ini(H)
i(H)
The Cameron–Martin formula gives rise to an integration by parts formula on
E
F:E\toR
DF:E\to\operatorname{Lin}(E;R)=E*
\intEF(x+ti(h))d\gamma(x)=\intEF(x)\exp\left(t\langleh,x\rangle\sim-\tfrac{1}{2}t2\|h
2 | |
\| | |
H |
\right)d\gamma(x)
for any
t\inR
t
t=0
\intEDF(x)(i(h))d\gamma(x)=\intEF(x)\langleh,x\rangle\simd\gamma(x).
Comparison with the divergence theorem of vector calculus suggests
div[Vh](x)=-\langleh,x\rangle\sim,
where
Vh:E\toE
Vh(x)=i(h)
x\inE
Using Cameron–Martin theorem one may establish (See Liptser and Shiryayev 1977, p. 280) that for a
q x q
H(t)
Hj,(t)
T | |
\int | |
0 |
\sumj,k=1q|Hj,k(t)|dt<infty,
it holds for a
q
w(t)
E\left[\exp\left(
T | |
-\int | |
0 |
w(t)*H(t)w(t)dt\right)\right]=\exp\left[\tfrac{1}{2}
T | |
\int | |
0 |
\operatorname{tr}(G(t))dt\right],
where
G(t)
q x q
dG(t) | |
dt |
=2H(t)-G2(t)
with the boundary condition
G(T)=0
In the special case of a one-dimensional Brownian motion where
H(t)=1/2
G(t)=\tanh(t-T)