Calabi triangle explained

The Calabi triangle is a special triangle found by Eugenio Calabi and defined by its property of having three different placements for the largest square that it contains.[1] It is an isosceles triangle which is obtuse with an irrational but algebraic ratio between the lengths of its sides and its base.

Definition

Consider the largest square that can be placed in an arbitrary triangle. It may be that such a square could be positioned in the triangle in more than one way. If the largest such square can be positioned in three different ways, then the triangle is either an equilateral triangle or the Calabi triangle.[2] Thus, the Calabi triangle may be defined as a triangle that is not equilateral and has three placements for its largest square.

Shape

The triangle is isosceles which has the same length of sides as . If the ratio of the base to either leg is, we can set that . Then we can consider the following three cases:

case 1) is acute triangle:
  • The condition is

    0<x<\sqrt{2}

    .

    In this case is valid for equilateral triangle.

    case 2) is right triangle:
  • The condition is

    x=\sqrt{2}

    .

    In this case no value is valid.

    case 3) is obtuse triangle:
  • The condition is

    \sqrt{2}<x<2

    .

    In this case the Calabi triangle is valid for the largest positive root of

    2x3-2x2-3x+2=0

    at

    x=1.55138752454832039226...

    .

    Consider the case of . Then

    0<x<2.

    Let a base angle be and a square be on base with its side length as .Let be the foot of the perpendicular drawn from the apex to the base. Then

    \begin{align} HB&=HC=\cos\theta=

    x
    2

    ,\\ AH&=\sin\theta=

    x
    2

    \tan\theta,\\ 0&<\theta<

    \pi
    2

    . \end{align}

    Then and, so .

    From △DEB ∽ △AHB,

    \begin{align} &EB:DE=HB:AH\\ &\Leftrightarrow(

    x-a
    2

    ):a=\cos\theta:\sin\theta=1:\tan\theta\\ &\Leftrightarrowa=(

    x-a
    2

    )\tan\theta\\ &\Leftrightarrowa=

    x\tan\theta
    \tan\theta+2

    .\\ \end{align}

    case 1) is acute triangle

    Let be a square on side with its side length as .From △ABC ∽ △IBJ,

    \begin{align} &AB:IJ=BC:BJ\\ &\Leftrightarrow1:b=x:BJ\\ &\LeftrightarrowBJ=bx. \end{align}

    From △JKC ∽ △AHC,

    \begin{align} &JK:JC=AH:AC\\ &\Leftrightarrowb:JC=

    x
    2

    \tan\theta:1\\ &\LeftrightarrowJC=

    2b
    x\tan\theta

    . \end{align}

    Then

    \begin{align} &x=BC=BJ+JC=bx+

    2b
    x\tan\theta

    \\ &\Leftrightarrowx=b

    x2\tan\theta+2
    x\tan\theta

    \\ &\Leftrightarrowb=

    x2\tan\theta
    x2\tan\theta+2

    . \end{align}

    Therefore, if two squares are congruent,

    \begin{align} &a=b\\ &\Leftrightarrow

    x\tan\theta
    \tan\theta+2

    =

    x2\tan\theta
    x2\tan\theta+2

    \\ &\Leftrightarrowx\tan\theta(x2\tan\theta+2)=x2\tan\theta(\tan\theta+2)\\ &\Leftrightarrowx\tan\theta(x(\tan\theta+2)-(x2\tan\theta+2))=0\\ &\Leftrightarrowx\tan\theta(x\tan\theta-2)(x-1)=0\\ &\Leftrightarrow2\sin\theta ⋅ 2(\sin\theta-1)(x-1)=0. \end{align}

    In this case,

    \pi
    4

    <\theta<

    \pi
    2

    ,2\sin\theta ⋅ 2(\sin\theta-1)\ne0.

    Therefore

    x=1

    , it means that is equilateral triangle.

    case 2) is right triangle

    In this case,

    x=\sqrt{2},\tan\theta=1

    , so

    a=

    \sqrt{2
    }, b = \frac.

    Then no value is valid.

    case 3) is obtuse triangle

    Let be a square on base with its side length as .

    From △AHC ∽ △JKC,

    \begin{align} &AH:HC=JK:KC\\ &\Leftrightarrow\sin\theta:\cos\theta=b:(1-b)\\ &\Leftrightarrowb\cos\theta=(1-b)\sin\theta\\ &\Leftrightarrowb=(1-b)\tan\theta\\ &\Leftrightarrowb=

    \tan\theta
    1+\tan\theta

    . \end{align}

    Therefore, if two squares are congruent,

    \begin{align} &a=b\\ &\Leftrightarrow

    x\tan\theta
    \tan\theta+2

    =

    \tan\theta
    1+\tan\theta

    \\ &\Leftrightarrow

    x
    \tan\theta+2

    =

    1
    1+\tan\theta

    \\ &\Leftrightarrowx(\tan\theta+1)=\tan\theta+2\\ &\Leftrightarrow(x-1)\tan\theta=2-x. \end{align}

    In this case,

    \tan\theta=

    \sqrt{(2+x)(2-x)
    }.

    So, we can input the value of,

    \begin{align} &(x-1)\tan\theta=2-x\\ &\Leftrightarrow(x-1)

    \sqrt{(2+x)(2-x)
    } = 2 - x \\&\Leftrightarrow (2 - x)\cdot((x - 1)^2 (2 + x) - x^2 (2 - x)) = 0 \\&\Leftrightarrow (2 - x)\cdot(2x^3 - 2x^2 - 3x + 2) = 0.\end

    In this case,

    \sqrt{2}<x<2

    , we can get the following equation:

    2x3-2x2-3x+2=0.

    Root of Calabi's equation

    If is the largest positive root of Calabi's equation:

    2x3-2x2-3x+2=0,\sqrt{2}<x<2

    we can calculate the value of by following methods.

    Newton's method

    We can set the function

    f:R\rarrR

    as follows:

    \begin{align} f(x)&=2x3-2x2-3x+2,\\ f'(x)&=6x2-4x-3=6(x-

    1
    3

    )2-

    11
    3

    . \end{align}

    The function is continuous and differentiable on

    R

    and

    \begin{align} f(\sqrt{2})&=\sqrt{2}-2<0,\\ f(2)&=4>0,\\ f'(x)&>0,\forallx\in[\sqrt{2},2]. \end{align}

    Then is monotonically increasing function and by Intermediate value theorem, the Calabi's equation has unique solution in open interval

    \sqrt{2}<x<2

    .

    The value of is calculated by Newton's method as follows:

    \begin{align} x0&=\sqrt{2},\\ xn+1&=xn-

    f(xn)
    f'(xn)

    =

    2-2
    4x
    n
    2-4x
    6x
    n-3

    . \end{align}

    Newton's method for the root of Calabi's equation! NO !! itaration value
    1.41421356237309504880168872420969807856967187537694...
    1.58943369375323596617308283187888791370090306159374...
    1.55324943049375428807267665439782489231871295592784...
    1.55139234383942912142613029570413117306471589987689...
    1.55138752458074244056538641010106649611908076010328...
    1.55138752454832039226341994813293555945836732015691...
    1.55138752454832039226195251026462381516359470986821...
    1.55138752454832039226195251026462381516359170380388...

    Cardano's method

    The value of can expressed with complex numbers by using Cardano's method:

    x={1\over3}(1+\sqrt[3]{-23+3i\sqrt{237}\over4}+\sqrt[3]{-23-3i\sqrt{237}\over4}).

    Viète's method

    The value of can also be expressed without complex numbers by using Viète's method:

    \begin{align} x&={1\over3}(1+\sqrt{22}\cos({1\over3}\cos-1(-{23\over11\sqrt{22}})))\\ &=1.55138752454832039226195251026462381516359170380389 … . \end{align}

    Lagrange's method

    The value of has continued fraction representation by Lagrange's method as follows:
    [1, 1, 1, 4, 2, 1, 2, 1, 5, 2, 1, 3, 1, 1, 390, ...] =

    1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{4+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{5+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{3+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{390+}}}}}}}}}}}}}}

    .[3] [4]

    base angle and apex angle

    The Calabi triangle is obtuse with base angle and apex angle as follows:

    \begin{align} \theta&=\cos-1(x/2)\\ &=39.13202614232587442003651601935656349795831966723206 … \circ,\\ \psi&=180-2\theta\\ &=101.73594771534825115992696796128687300408336066553587 … \circ.\\ \end{align}

    See also

    Footnotes

    Citations

    References

    Notes and References

    1. Web site: Outline of Proof Regarding Squares Wedged in Triangle . https://archive.today/20121212215151/http://www.people.fas.harvard.edu/~sfinch/csolve/calabi.html . dead . 12 December 2012 . Calabi . Eugenio . Eugenio Calabi . 3 Nov 1997 . 3 May 2018.
    2. Book: Conway . J.H. . John Horton Conway . Guy . R.K. . Richard K. Guy . The Book of Numbers . 1996 . Springer-Verlag . New York. 206. Calabi's Triangle. https://books.google.com/books?id=0--3rcO7dMYC&pg=PA206.
    3. - Œuvres II, p.539-578.
    4. - Œuvres II, p.581-652.