The Calabi triangle is a special triangle found by Eugenio Calabi and defined by its property of having three different placements for the largest square that it contains.[1] It is an isosceles triangle which is obtuse with an irrational but algebraic ratio between the lengths of its sides and its base.
Consider the largest square that can be placed in an arbitrary triangle. It may be that such a square could be positioned in the triangle in more than one way. If the largest such square can be positioned in three different ways, then the triangle is either an equilateral triangle or the Calabi triangle.[2] Thus, the Calabi triangle may be defined as a triangle that is not equilateral and has three placements for its largest square.
The triangle is isosceles which has the same length of sides as . If the ratio of the base to either leg is, we can set that . Then we can consider the following three cases:
0<x<\sqrt{2}
In this case is valid for equilateral triangle.
x=\sqrt{2}
In this case no value is valid.
\sqrt{2}<x<2
In this case the Calabi triangle is valid for the largest positive root of
2x3-2x2-3x+2=0
x=1.55138752454832039226...
Consider the case of . Then
0<x<2.
\begin{align} HB&=HC=\cos\theta=
x | |
2 |
,\\ AH&=\sin\theta=
x | |
2 |
\tan\theta,\\ 0&<\theta<
\pi | |
2 |
. \end{align}
From △DEB ∽ △AHB,
\begin{align} &EB:DE=HB:AH\\ &\Leftrightarrow(
x-a | |
2 |
):a=\cos\theta:\sin\theta=1:\tan\theta\\ &\Leftrightarrowa=(
x-a | |
2 |
)\tan\theta\\ &\Leftrightarrowa=
x\tan\theta | |
\tan\theta+2 |
.\\ \end{align}
Let be a square on side with its side length as .From △ABC ∽ △IBJ,
\begin{align} &AB:IJ=BC:BJ\\ &\Leftrightarrow1:b=x:BJ\\ &\LeftrightarrowBJ=bx. \end{align}
From △JKC ∽ △AHC,
\begin{align} &JK:JC=AH:AC\\ &\Leftrightarrowb:JC=
x | |
2 |
\tan\theta:1\\ &\LeftrightarrowJC=
2b | |
x\tan\theta |
. \end{align}
Then
\begin{align} &x=BC=BJ+JC=bx+
2b | |
x\tan\theta |
\\ &\Leftrightarrowx=b
x2\tan\theta+2 | |
x\tan\theta |
\\ &\Leftrightarrowb=
x2\tan\theta | |
x2\tan\theta+2 |
. \end{align}
Therefore, if two squares are congruent,
\begin{align} &a=b\\ &\Leftrightarrow
x\tan\theta | |
\tan\theta+2 |
=
x2\tan\theta | |
x2\tan\theta+2 |
\\ &\Leftrightarrowx\tan\theta ⋅ (x2\tan\theta+2)=x2\tan\theta(\tan\theta+2)\\ &\Leftrightarrowx\tan\theta ⋅ (x(\tan\theta+2)-(x2\tan\theta+2))=0\\ &\Leftrightarrowx\tan\theta ⋅ (x\tan\theta-2) ⋅ (x-1)=0\\ &\Leftrightarrow2\sin\theta ⋅ 2(\sin\theta-1) ⋅ (x-1)=0. \end{align}
In this case,
\pi | |
4 |
<\theta<
\pi | |
2 |
,2\sin\theta ⋅ 2(\sin\theta-1)\ne0.
Therefore
x=1
In this case,
x=\sqrt{2},\tan\theta=1
a=
\sqrt{2 | |
Then no value is valid.
Let be a square on base with its side length as .
From △AHC ∽ △JKC,
\begin{align} &AH:HC=JK:KC\\ &\Leftrightarrow\sin\theta:\cos\theta=b:(1-b)\\ &\Leftrightarrowb\cos\theta=(1-b)\sin\theta\\ &\Leftrightarrowb=(1-b)\tan\theta\\ &\Leftrightarrowb=
\tan\theta | |
1+\tan\theta |
. \end{align}
Therefore, if two squares are congruent,
\begin{align} &a=b\\ &\Leftrightarrow
x\tan\theta | |
\tan\theta+2 |
=
\tan\theta | |
1+\tan\theta |
\\ &\Leftrightarrow
x | |
\tan\theta+2 |
=
1 | |
1+\tan\theta |
\\ &\Leftrightarrowx(\tan\theta+1)=\tan\theta+2\\ &\Leftrightarrow(x-1)\tan\theta=2-x. \end{align}
In this case,
\tan\theta=
\sqrt{(2+x)(2-x) | |
So, we can input the value of,
\begin{align} &(x-1)\tan\theta=2-x\\ &\Leftrightarrow(x-1)
\sqrt{(2+x)(2-x) | |
In this case,
\sqrt{2}<x<2
2x3-2x2-3x+2=0.
If is the largest positive root of Calabi's equation:
2x3-2x2-3x+2=0,\sqrt{2}<x<2
We can set the function
f:R\rarrR
\begin{align} f(x)&=2x3-2x2-3x+2,\\ f'(x)&=6x2-4x-3=6(x-
1 | |
3 |
)2-
11 | |
3 |
. \end{align}
R
\begin{align} f(\sqrt{2})&=\sqrt{2}-2<0,\\ f(2)&=4>0,\\ f'(x)&>0,\forallx\in[\sqrt{2},2]. \end{align}
\sqrt{2}<x<2
The value of is calculated by Newton's method as follows:
\begin{align} x0&=\sqrt{2},\\ xn+1&=xn-
f(xn) | |
f'(xn) |
=
| |||||||
|
. \end{align}
1.41421356237309504880168872420969807856967187537694... | ||
1.58943369375323596617308283187888791370090306159374... | ||
1.55324943049375428807267665439782489231871295592784... | ||
1.55139234383942912142613029570413117306471589987689... | ||
1.55138752458074244056538641010106649611908076010328... | ||
1.55138752454832039226341994813293555945836732015691... | ||
1.55138752454832039226195251026462381516359470986821... | ||
1.55138752454832039226195251026462381516359170380388... |
The value of can expressed with complex numbers by using Cardano's method:
x={1\over3}(1+\sqrt[3]{-23+3i\sqrt{237}\over4}+\sqrt[3]{-23-3i\sqrt{237}\over4}).
The value of can also be expressed without complex numbers by using Viète's method:
\begin{align} x&={1\over3}(1+\sqrt{22}\cos({1\over3}\cos-1(-{23\over11\sqrt{22}})))\\ &=1.55138752454832039226195251026462381516359170380389 … . \end{align}
The value of has continued fraction representation by Lagrange's method as follows:
[1, 1, 1, 4, 2, 1, 2, 1, 5, 2, 1, 3, 1, 1, 390, ...] =
1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{4+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{5+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{3+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{390+ … }}}}}}}}}}}}}}
The Calabi triangle is obtuse with base angle and apex angle as follows:
\begin{align} \theta&=\cos-1(x/2)\\ &=39.13202614232587442003651601935656349795831966723206 … \circ,\\ \psi&=180-2\theta\\ &=101.73594771534825115992696796128687300408336066553587 … \circ.\\ \end{align}