CM chondrite explained
CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.
Overview and Taxonomy
Meteorites mostly divide into Ordinary and 'Carbonaceous' chondrite classes; far fewer belong to lesser classes like Enstatites and Ureilites. The term 'chondrite' indicates that these contain (or may have contained) chondrules in a matrix. Chondrules are cooled droplets of minerals, predating the meteorites themselves. The term 'carbonaceous' was assigned relative to the ordinary chondrites; some Enstatite and Ureilite meteorites may have more carbon than C-chondrites.[1] Still, all C-chondrites are distinguished from ordinary chondrites by a non-trace carbon content (resulting in a dark color), plus other volatiles, giving a lower density.[2] [3] After the classes were devised, a more rigorous definition was found: C-chondrites contain proportionally higher magnesium than ordinary chondrites.[4] [5] [6]
The C-chondrites subdivide into CI, CM, CO, CV, CK, CR, and lesser groups (CH, CB, and ungrouped C-meteorites). Specimens are formed into groups by their petrological and chemical qualities, and the group named for a salient example. These include the CI (Ivuna-like), CM (Mighei-like), CO (Ornans-like), etc. The CM group most resembles the CI and CO chondrites; a CM-CO is sometimes described.[7] [8] [9] All three groups contain clearly anomalous 50Ti and 54Cr isotopes.[10] [11]
Though the C-chondrites are far rarer than ordinary chondrites, the CM group is "the most abundant type of" them.[12] [13] The latest Catalogue of Meteorites (5th edition, 2000) gives 15 CM falls (observed entries, then recoveries), and 146 finds (meteorites with entries unobserved, possibly ancient). By contrast, the next highest are the COs- 5 falls, 80 finds listed. These are in a class of 36 C-chondrite falls, 435 finds. If the CMs and COs are taken to be a clan, its dominance is even higher.[14]
Petrologic types
C-chondrites in general, and CM chondrites among them, have low densities for meteorites. CMs are slightly more dense (~2.1 gram/cc) than the CIs, but less dense than CO and other C-chondrites.[15] [16] This is due to a combination of brecciation (rock lithified from fragments of prior rocks)[17] including porosities[2] and inherently light constituent materials (see chemistry, below). (Rare unbrecciated CMs include Y-791198 and ALH81002.[18])
Based primarily on petrology, early scientists attempted to quantify different meteorites. Rose ("kohlige meteorite"),[19] then Tschermak devised early taxonomies.[20] In the 1904 scheme of Brezina, today's CM chondrites would be "K" ("coaly chondrites").[21] Wiik published the first recognizably modern system in 1956, dividing meteorites into Type I, II, and III. CMs fell within Wiik's Type II.[22]
The CM chondrites are essentially all Type 2 in the petrographic scale of Van Schmus and Wood 1967; by that time, CI and CM recoveries were enough to define the 'left' (aqueous alteration) end of the scale. (CI chondrites, the Van Schmus Wood Type 1, is equivalent to Wiik's Type I, etc.) The types 4 through 6 indicate increasing thermal alteration; Type 3 is assumed to be unaltered.[23]
Type | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|
Homogeneity of olivine and pyroxene compositions | - | >5% mean deviations | ≤5% | Homogeneous |
Structural state of low-Ca pyroxene | - | Predominantly monoclinic | >20% monoclinic | ≤20% monoclinic | Orthorhombic |
Degree of development of secondary feldspar | - | Minor primary grains | Secondary <2-um grains | Secondary 2-50-um grains | Secondary >50-um grains |
Chondrule glass | Altered or absent | Mostly altered, some preserved | Clear, isotropic | Devitrified | Absent |
Metal: Maximum Ni content | - | <20% Taenite minor or absent | >20% kamacite and taenite in exsolution relationship |
Sulfides: Mean Ni content | - | >0.5% | <0.5% |
Overall Texture | No chondrules | Sharp chondrule boundaries | Some chondrules can be discerned, fewer sharp edges | Chondrules poorly delineated | Primary textures destroyed |
Matrix | Fine-grained, opaque | Mostly fine-grained opaque | Opaque to transparent | Transparent, recrystallized |
Bulk carbon content | ~2.8% | ~0.6–2.8% | ~0.2–1.0% | <0.2% |
Bulk water content | ~20% | ~4-18% | 0.3-3% | <1.5% | |
Van Schmus, Wood 1967; Sears, Dodd 1988; Brearley, Jones 1998; Weisberg 2006[8]
The modern groups 'V' and 'O' were named by Van Schmus in 1969 as divisions of Type 3, as 'subclass C3V' and 'C3O'.[24] Wasson then added C2M in 1974; since then, C2Ms have generally been shortened to simply 'CM', as have the other groups.[25]
Petrologic types by groupGroup | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|
CI | | | | | | | |
CM | | | | | | | |
CR | | | | | | | |
CH | | | | | | | |
CB | | | | | | | |
CV | | | | | | | |
CO | | | | | | | |
CK | | | | | | | | |
After Weisberg et al. 2006,[8] Giese et al. 2019[26] Note: lone CV2 specimen, Mundrabilla 012
[27] [28] Chondrules and similar
As Type 2 meteorites, CM chondrites have some remaining chondrules; others have been modified or dissolved by water. COs have more chondrules; CIs have either trace outlines of former chondrules ("pseudomorphs") or, some have argued, never contained any chondrules at all. Many CM chondrules are surrounded by either rims of accessory minerals, or haloes of water-altered chondrule material.[29] [30]
The chondrules of CM chondrites, though fewer, are larger than in COs. While CM chondrules are smaller than average in diameter (~300 micrometer), CO chondrules are exceptionally small (~170 um).[31] [32] This may be a survivor bias: consider that the water which dissolves CM chondrules successfully eliminates those which are already small, while those which were large may remain to be observed, though with less of the original material.[33] Similarly, CMs contain minor CAIs (calcium-aluminium rich inclusions).[34] [35]
Matrix
The matrix of CMs (ground material, between chondrules) has been described as "sponge" or "spongy."[24]
Grains of olivine and pyroxene silicates, too, are fewer in CM meteorites than COs, but more than CIs. As with chondrules, these are water-susceptible, and follow the water progression of the petrographic scale. So, too, do grains of free metal. CO meteorites contain higher levels of free metal domains, where CIs have mostly oxidized theirs; CMs are in between.[36] [37]
Both free metal, and grains of olivine/pyroxene, have been largely or predominantly altered to matrix materials.[38] A CM meteorite will consist of more matrix than a CO, but less than a CI (which are essentially all matrix, per Van Schmus & Wood 1967).[39]
In 1860, Wohler presciently or coincidentally identified matrix as serpentinite.[40] Fuchs et al. 1973, unable to identify the constituent phyllosilicates, gave matrix as "poorly characterized phase" (PCP).[41] Cronstedtite was published by Kurat and Kracher in 1975.[42]
Tomeoka and Buseck, identifying cronstedtite and tochilinite in 1985, gave matrix material as “FESON” (Fe-Ni-S-O layers), as well as the backronym “partly characterized phase” for “PCP.”[43] Later authors would use the term TCI, tochilinite-cronstedtite intergrowths. Less common phyllosilicates include chlorite, vermiculite, and saponite.[44] [45]
Sub-Classification
The CM group is both numerous and diverse. Multiple attempts have been made to subdivide the group beyond the Van Schmus-Wood typing. McSween 1979 was an early proposal.[46] After him, these add a suffix after the petrologic type, with 'CM2.9' referring to less-altered, CO-like specimens, and 'CM2.0' being more-altered, CI-like meteorites. (As of recently, no true 2.9 specimens have been catalogued.)
McSween 1979 graded the amount of matrix versus total amount, and the depletion of iron in the matrix, to quantify higher degrees of alteration.[46]
Browning et al. 1996 devised a formula ("MAI," Mineralogical Alteration Index), quantified the amount of unaltered silicate grains, and graded the alteration level of chondrules to quantify alteration.[47]
Rubin et al. 2007 added measurement of carbonates, with more dolomite and less calcite indicating higher alteration.[48]
Howard et al. 2009, 2011 measured total abundance of phyllosilicates to quantify alteration.[49] [13]
Alexander et al. 2012, 2013 measured deuterium level, C/H, and nitrogen isotopes to quantify alteration.[50] [51]
This line of inquiry continues, as the systems have some disagreement on specimens. Murchison is consistently ranked as low-alteration, but authors differ on some more-altered meteorites.
Transitional examples
CM-CO
- Paris- described as "the least altered CM chondrite so far"[52] "that bridges the gap between CMs and COs"[53]
- ALHA77307
- Adelaide
- Acfer 094
- MAC87300, MAC88107
CM-CI
Water
The CI and CM chondrites are the "water rich" meteorites,[54] [55] [56] CMs having 3-14 wt% water.[57] Water is contained in tochilinite,[58] [59] cronstedtite,[60] and others.[61] [62] [59]
This water, not comets,[63] [64] was the likely origin of Earth's oceans via isotope tracing (primarily deuterium, but also others).[65] [56]
Fluid inclusions
Fluid inclusions containing meteorite water have long been reported;[66] [67] [68] however, these claims were doubted due to, e. g., contamination by cutting fluids during sectioning.[69] [70] More modern claims have taken steps such as waterless preparation.[71] [72] [73]
Chemistry
Carbonaceous chondrites, as the name suggests, contain appreciable carbon compounds.[74] These include native carbon, simple compounds like metal carbides and carbonates, organic chains, and polycyclic aromatic hydrocarbons (PAHs).[75] [76]
The elemental abundances of some C-chondrite groups (with the obvious exception of hydrogen, helium, and some other elements, see below)[77] [78] have long been known to resemble solar abundance values.[79] [80] [81] The CI chondrites, in particular, correspond "quite closely, more so than does any other type of meteoric or terrestrial matter";[82] called "somewhat miraculous".[8] Of course, only gas giant planets have the mass to retain, explicitly, hydrogen and helium. This extends to most noble gases, and to lesser amounts the elements N, O and C, the atmophiles. Other elements- volatiles and refractories- have correspondences between CI chondrites and the solar photosphere and solar wind such that the CI group is used as a cosmochemical standard.[83] [84] As the Sun is 99% of the mass of the Solar System, knowing the solar abundance is the starting point for any other part or process of this System.[85]
The solar correspondence is similar but weaker in CM chondrites. More-volatile elements have been somewhat depleted relative to the CIs, and more-refractory elements somewhat enriched.[7] [83] [84]
A small amount[86] of meteorite materials are small presolar grains (PSGs).[87] [88] These are crystals of material which survives from interstellar space, since before the formation of the Solar System. PSGs include silicon carbide ("Moissanite")[89] and micro-diamonds,[90] as well as other refractory minerals such as corundum and zircon.[91] The isotope levels of their elements do not match solar system levels, instead being closer to e. g., the interstellar medium. PSGs themselves may contain smaller PSGs.[92]
As with other meteorite classes, some carbon content is as carbides (often Cohenite, Fe3C with e.g., nickel substitutions)[93] and carbonates such as calcite and dolomite.[94] [95] [96] Aragonite appears, where CIs contain little or none.[97]
Total carbon compounds in CM chondrites are lower than in CI chondrites; however, more are aromatics.[98] Isotope profiling indicates these are meteoritic, not terrestrial.[99]
The organics of C-chondrites divide into soluble, and IOM (Insoluble Organic Matter). The soluble fraction would yield to the chemistry techniques of the mid-20th century,[100] [101] giving paraffin, naphthene and aromatics, with other contributions.[102] The IOM is, however, the clear majority of the organic component; in 1963, Briggs and Mamikunian could only give it as "very high molecular weight". IOM itself divides into two components: thermally labile, and refractory.[103]
Amino acids
Amino acids and other organics were first reported by multiple groups;[104] [105] however, concentrations were low to undetectable,[106] [107] and claimed to be terrestrial contamination.[108] [109] The 1969 fall of the Murchison meteorite provided over 100 kg of sample, the largest CM ever. Specimens were recovered quickly, from a dry area. Combined with progress in, e.g., biochemistry and petrochemistry techniques, the question could be addressed more definitively: sugars[110] and amino acids[111] [112] existed in space, via meteorites. This includes non-terrestrial amino acids.[113] [114] Multiple isotopes do not match Earth levels, strong evidence for non-contamination.[115] [116] [117]
The levels of amino acids are higher in CMs than CIs.[118]
Amino-like nitriles/cyanides[119] and heterocycles[120] are also found. These related organics may be decomposition products or precursors.[121] [122] [123]
Chirality
The early analyses did not record optical rotation, and gave meteoritic organics as racemic.[124] [102] As amino acids are diverse but low, the discovery of meteoritic chirality had to await the separation of IOM.[125] Handedness of some meteorite organics is now accepted (see below),[116] including in the soluble organic fraction.[126] [127]
Meteoritic Amino AcidsAmino Acid | | Ref |
| | 1 |
| | 1 |
| | 5 |
| | 4 |
| | 4 |
| | 4 |
| | 2 |
| | 4 |
| | 5 |
| | 4 |
| | 4 |
| | 5 |
| | 2 |
| | 1 |
| | 1 |
| | 3 |
| | 3 |
| | 1 |
| | 5 |
| | 5 |
| | 3 |
| | 1 |
| | 6 |
| | 5 |
| | 6 |
| | 1 | |
1. Kvenvolden et al. 1970;[113] 2. Meierheinrich[128] et al. 2004 3. Martins et al. 2015[129] 4. Koga et al. 2017;[114] 5. Rudraswami et al. 2018;[130] 6. Pizzarello, Yarnes 2018[127]
Gas
The first publication of anomalous gas in a carbonaceous chondrite (Murray) was in 1960.[131] "Gas-rich meteorites" of other classes host their gas in dark liths,[132] in most cases closely related to CM.[133]
Gases in meteorites include primordial, solar (both solar wind, and a distinct solar flare component), radiogenic (due to cosmic-ray exposure), and fissile (decay products).[134] Host materials are generally carbonaceous,[135] including presolar grains: diamond,[136] silicon carbide,[137] [138] graphite,[139] and organics.
Nogoya is one particularly gas-rich CM chondrite.[132] [140]
Micrometeorites lose significant amounts of their gas to entry heating,[141] but still deliver quantifiable amounts.[142]
Isotopic analyses
Isotope studies have become vital in examining natural histories.[143] Oxygen, in particular, forms quite stable oxides; it requires significant events, processes, or energies to segregate isotopes by their slight mass differences.
CM and CI chondrites have a measurable difference in oxygen isotope levels. This suggests a different formation temperature, and hence a different zone of the young Solar System. However, CM and CO meteorites were found to have similar oxygen isotopes, indicating a relationship.[7] [144] [145]
Nitrogen
Provenance
CMs, like other C-chondrites, are subjected to a serious observation bias. C-chondrites are friable, due to both macro-scale porosity and micro-scale matrices of phyllosilicates, with many chondrules also having layers such as phyllosilicates.[146] The meteorites have been described as "tuff" (compacted volcanic ash).[147] [29]
As one example, the Tagish Lake meteorite provided ~10 kg of samples, from a meteor estimated to be 60-90 tons before entry.[148]
By contrast, many ordinary chondrite meteorites are tougher[149] and overrepresented.[150] Iron meteorites are even moreso.[151]
CI and CM chondrites in particular are then subject to weathering on the ground. As large fractions of C-chondrite material are water soluble, ordinary chondrites and irons are more likely to be recognized and recovered. Greater coverage of hot deserts and Antarctica has resulted in many C-chondrite specimens.[152] [153] [154]
Parent body(s)
See main article: Parent body.
As carbonaceous specimens, CM and other groups are widely assumed to be from carbonaceous asteroids. This includes the explicit C-type asteroids, and to various degrees the related G-, B- (including the deprecated F-), D-, and P-types.[155] [156] [157] As carbonaceous types are the majority of asteroids,[158] [159] [160] but only a few percent of recovered meteorites,[14] selection/filtering effects must be severe.
Aside from the diversity of CMs, and the diversity of C-asteroid types and subtypes (besides the asteroids themselves), the question of parentage is very open as of this writing. The Almahata Sitta meteorite was catalogued as a ureilite, an entirely different meteorite class. However, it entered as asteroid 2008 TC3. A crude spectrum was taken before entry, which would have placed 2008 TC3 as a F- or B-type.[161]
Some amount of space weathering is seen to occur on carbonaceous asteroids; this complicates attempts to link parents via spectroscopy.[162] [163] [164]
A hypothesis persists that all CMs stem from a single parent.[7] [165] [166]
An alternate hypothesis[167] [168]
Polymict meteorites
Brecciated meteorites include monomict breccias (re-formed from rock fragments on a single type) and polymict ones (incorporating different source rocks). Polymict meteorites record exchanges between sites. C-chondrite materials are often found in such meteorites.[169] [170]
- PRA 04401- nominally a HED, contains as much CM or CM-like material in clasts as HED material[171]
- Kaidun- a "kitchen sink"[172] breccia
- Supuhee
- Plainview
- Jodzie
Micrometeorites/Interplanetary Dust Particles (IDPs)
Open issues
List of CM chondrites
Notable specimens
- Mighei- 1889; from which the group name derives
- Cold Bokkevelt- 1838; a find, but from an arid region, and considered reasonably unaltered
- Nogoya- 1879;
- Boriskino- 1930;
- Murray- 1950;
- Murchison- 1969; large total known weight of 100 kg recovered, resulting in extensive study
- Yamato 74662- 1974; first Antarctic CM
Recently recovered CM chondrites
- Aguas Zarcas- Apr 2019 fall, specimens recovered quickly; >20 kg
- Winchcombe meteorite
- Mukundpura meteorite- 6 June 2017 fall, broke up during impact; 2.2 kg of fragments were recovered within hours
See also
General References
- Mason, B. The Carbonaceous Chondrites. 1962 Space Sciences Reviews vol. 1, p. 621
- Meteorites and the Early Solar System, Kerridge, J. Matthews, M. eds. 1988 University of Arizona Press, Tucson
- Planetary Materials, Papike, J., ed. 1999 Mineralogical Society of America, Washington DC
- The Catalogue of Meteorites, Grady, M. ed. 2000 Cambridge University Press, Cambridge
- Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press, Tucson
Notes and References
- Book: Scott . E . Krot . A . Treatise on Geochemistry. 1 . 2003 . 143 . Elsevier . 0-08-043751-6. Ch. Chondrites and their Components
- Britt . D . The porosity of dark meteorites and the structure of low-albedo asteroids . 2000Icar..146..213B . Icarus . Jul 2000 . 143 . 1 . 213. 10.1006/icar.2000.6374 .
- Macke . R . Consolmagno . G . Britt . D . Density, porosity, and magnetic susceptibility of carbonaceous chondrites . Meteoritics & Planetary Science . Nov 2011 . 46 . 12 . 1842. 10.1111/j.1945-5100.2011.01298.x . 2011M&PS...46.1842M . 128721593 . free .
- Urey . H . Criticism of Dr. B. Mason's paper on "The origin of meteorites" . 1961JGR....66.1988U . Journal of Geophysical Research. Jun 1961 . 66 . 6 . 1988. 10.1029/JZ066i006p01988 .
- Ahrens . L . Si-Mg fractionation in chondrites . 1964GeCoA..28..411A . Geochimica et Cosmochimica Acta . 1964 . 28 . 4 . 411. 10.1016/0016-7037(64)90115-2 .
- Ahrens . L . Observations on the Fe-Si-Mg relationship in chondrites . 1965GeCoA..29..801A . Geochimica et Cosmochimica Acta . 1965 . 29 . 7 . 801. 10.1016/0016-7037(65)90032-3 .
- Kallemeyn . G . Wasson . J . The compositional classification of chondrites-I. The carbonaceous chondrite groups . Geochimica et Cosmochimica Acta . 1981 . 45 . 7 . 1217. 10.1016/0016-7037(81)90145-9 . 1981GeCoA..45.1217K .
- Book: Weisberg . M . 1981GeCoA..45.1217K . McCoy . T . Krot . A . Meteorites and the Early Solar System II . Geochimica et Cosmochimica Acta . 45 . 7 . 2006 . University of Arizona Press . Tucson . 19 . Systematics and Evaluation of Meteorite Classification. 10.1016/0016-7037(81)90145-9 .
- Web site: CM-CO clan chondrites . Meteoritical Bulletin: Search the Database . The Meteoritical Society . 10 Sep 2019.
- Trinquier . A . Elliott . T . Ulfbeck . D . Coath . C . Krot . A . Bizzarro . M . Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk . 10.1126/science.1168221 . 19372428 . Science . 17 Apr 2009 . 324 . 5925 . 374–6 . 2009Sci...324..374T . 6120153 .
- Qin . L . Rumble . D . Alexander . C . Carlson . R . Jenniskens . P . Shaddad . M . The chromium isotopic composition of Almahata Sitta . 2010LPI....41.1910Q . Meteoritics & Planetary Science . 2010 . 45 . 1533 . 1771. 10.1111/j.1945-5100.2010.01109.x . 55170869 . free .
- McSween . H . Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix . 10.1016/0016-7037(79)90024-3 . Geochimica et Cosmochimica Acta . 1979 . 43 . 11 . 1761. 1979GeCoA..43.1761M .
- Howard . K . Benedix . G . Bland . P . Cressey . G . Modal mineralogy of CM chondrites by X-ray Diffraction (PSR-XRD) . 10.1111/j.1945-5100.2004.tb00046.x . Geochimica et Cosmochimica Acta . 2011 . 75 . 2735. free .
- Book: Grady . M . The Catalogue of Meteorites . 2000 . Cambridge University Press . Cambridge . 0-521-66303-2.
- Britt . D . Consolmagno . G . Stony meteorite porosities and densities: A review of the data through 2001. 10.1111/j.1945-5100.2003.tb00305.x . Meteoritics & Planetary Science . August 2003 . 38 . 8 . 1161. 2003M&PS...38.1161B . 55612044 .
- Carry . B . Density of asteroids . 2012P&SS...73...98C . Planetary and Space Science . 2012 . 73 . 1 . 98. 1203.4336 . 10.1016/j.pss.2012.03.009 . 119226456 .
- Bischoff . A . Ebert . S . Metzler . K . Lentfort . S . Breccia Classification of CM Chondrites . 2017LPICo1987.6089B . 80th Meteoritical Society . 2017 . 1987.
- Chizmadia . L . Brearley . A . Aqueous Alteration Of Carbonaceous Chondrites: New Insights From Comparative Studies Of Two Unbrecciated CM2 Chondrite, Y-791198 And ALH81002 . 2004LPI....35.1753C . LPS XXXV . 2004 . 1753.
- Book: Rose . G . Physik. Abhandl. Akad. Wiss. . 1863 . Berlin . 23.
- Tschermak. G. Beitrag zur Classification der Meteoriten. Math. -Naturw. Cl.. Sitzber. Akad. Wiss.. 1883. 85. 1. 347–71.
- Brezina . A . The Arrangement of Collections of Meteorites . 983506 . Proc. Am. Philos. Soc. . 1904 . 43 . 176 . 211–247 .
- Wiik . H . The chemical composition of some stony meteorites . 1956GeCoA...9..279W . Geochimica et Cosmochimica Acta . 1956 . 9 . 5 . 279. 10.1016/0016-7037(56)90028-X .
- Van Schmus . W . Wood . J . A chemical-petrologic classification for the chondritic meteorites . 1967GeCoA..31..747V . Geochimica et Cosmochimica Acta . 1967 . 31 . 5 . 747. 10.1016/S0016-7037(67)80030-9 .
- Book: Millman. P.. Meteorite Research . 1969 . D. Reidel Publishing Company . Dordrecht . 978-94-010-3413-5 . 480 . Mineralogical, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites.
- Book: Wasson . J . Meteorites: Classification and Properties . 1974 . Springer-Verlag . New York . 978-3-642-65865-5.
- Giese . C Ten Kate I Plumper O King H Lenting C Liu Y Tielens A . The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions . 10.1111/maps.13359 . Meteoritics & Planetary Science . Jul 2019 . 54 . 9 . 1930. 2019M&PS...54.1930G . free . 1887/84978 . free .
- Web site: Meteoritical Bulletin: Entry for Mundrabilla 012 . Meteoritical Bulletin . The Meteoritical Society . 14 Sep 2019.
- Web site: Mundrabilla 012 meteorite, Mundrabilla Roadhouse, Dundas Shire, Western Australia, Australia . Mindat.org . 14 Sep 2019.
- Bunch . T . Chang . S . Carbonaceous chondrite (CM) phyllosilicates: condensation or alteration origin? . 1978LPI.....9..134B . Lunar and Planetary Science IX . 1978 . 134.
- Book: Metzler . K . Bischoff . A . Chondrules and the Protoplanetary Disk, NASA-CR-197121 . Jan 1994 . 23 . Constraints on chondrule agglomeration from fine-grained chondrule rims.
- Rubin . A . Size-frequency distributions of chondrules in CO3 chondrites . 1989Metic..24..179R . Meteoritics . Sep 1989 . 24 . 3 . 179. 10.1111/j.1945-5100.1989.tb00960.x .
- Choe . W . Huber . H . Rubin . A . Kallemeyn . G . Wasson . J . Compositions and taxonomy of 15 unusual carbonaceous chondrites . 2010M&PS...45..531C . Meteoritics & Planetary Science . Apr 2010 . 45 . 4 . 531. 10.1111/j.1945-5100.2010.01039.x . 16839084 . free .
- Rubin . A . Correlated petrologic and geochemical characteristics of CO3 chondrites . 1998M&PS...33..385R . Meteoritics & Planetary Science . May 1998 . 33 . 2 . 385. 10.1111/j.1945-5100.1998.tb01644.x . 129404145 . free .
- Rubin . A . Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite-free spinel inclusions in CM chondrites . 2007M&PS...42.1711R . Meteoritics & Planetary Science . Oct 2007 . 42 . 10 . 1711. 10.1111/j.1945-5100.2007.tb00532.x . free .
- Hezel . D . Russell . S . Ross . A . Kearsley . A . Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations . 2008M&PS...43.1879H . Meteoritics & Planetary Science . 2008 . 43 . 11 . 1879. 0810.2174 . 10.1111/j.1945-5100.2008.tb00649.x . 119289798 .
- Barber . D . The Matrix of C2 and C3 Carbonaceous Chondrites . 1977Metic..12..172B . Meteoritics . 1977 . 12 . 172.
- Barber . D . Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites . 1981GeCoA..45..945B . Geochimica et Cosmochimica Acta . 1981 . 45 . 6 . 945. 10.1016/0016-7037(81)90120-4 .
- Wood . J . Chondrites: Their metallic minerals, thermal histories, and parent planets . Icarus . 1967 . 6 . 1 . 1–49 . 10.1016/0019-1035(67)90002-4. 1967Icar....6....1W .
- Wood . J . Olivine and pyroxene compositions in type II carbonaceous chondrites . 1967GeCoA..31.2095W . Geochimica et Cosmochimica Acta . Oct 1967 . 31 . 10 . 2095. 10.1016/0016-7037(67)90144-5 .
- Wöhler . F . Sitzungsber. Akad. Wissensch. . 1860 . 41 . 565.
- Fuchs . L . Olsen . E . Jensen . K . Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite . registration . Smithsonian Contributions to the Earth Sciences . 1973 . 10 . 1–39 . 10.5479/si.00810274.10.1.
- Kurat . G . Kracher . A . Preliminary report on the Cochabamba carbonaceous chondrite . Meteoritics . Dec 1975 . 10 . 432–433. 1975Metic..10..432K .
- Tomeoka . K . Buseck . P . Indicators of aqueous alteration in CM carbonaceous chondrites . Geochimica et Cosmochimica Acta . 1985 . 49 . 10 . 2149–2163 . 10.1016/0016-7037(85)90073-0.
- Barber . D . Phyllosilicates and other layer-structured minerals in stony meteorites . Clay Minerals . Dec 1985 . 20 . 4 . 415–454. 10.1180/claymin.1985.020.4.01 . 129110766 .
- Book: Lauretta . D . McSween . H . Meteorites And The Early Solar System II . 2006 . University of Arizona Press . Tucson . 9780816525621 . 588 . The Action of Water.
- McSween . H . Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix . 1979GeCoA..43.1761M . Geochimica et Cosmochimica Acta . 1979 . 43 . 11 . 1761. 10.1016/0016-7037(79)90024-3 .
- Browning . L . McSween . H . Zolensky . M . Correlated alteration effects in CM carbonaceous chondrites . 1996GeCoA..60.2621B . Geochimica et Cosmochimica Acta . 1996 . 60 . 14 . 2621. 10.1016/0016-7037(96)00121-4 .
- Rubin . A . Trigo-Rodriguez . J . Huber . H . Wasson . J . Progressive aqueous alterations of CM carbonaceous chondrites . 2007GeCoA..71.2361R . Geochimica et Cosmochimica Acta . 2007 . 71 . 9 . 2361. 10.1016/j.gca.2007.02.008 .
- Howard . K . Benedix . G . Bland . P . Cressey . G . Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration . 2009GeCoA..73.4576H . Geochimica et Cosmochimica Acta . Aug 2009 . 73 . 15 . 4576. 10.1016/j.gca.2009.04.038 .
- Alexander . C . Bowden . R . Fogel . M . Howard . K . Greenwood . R . The Classification of CM and CR Chondrites Using Bulk H Abundances and Isotopes . 43rd LPSC . Mar 2012 . 1659.
- Alexander . C . Howard . K . Bowden . R . Fogel . M . The classification of CM and CR chondrites using bulk H, C N abundances and isotopic compositions . Geochimica et Cosmochimica Acta . 2013 . 2013GeCoA.123..244A. 123 . 244. 10.1016/j.gca.2013.05.019 .
- Hewins . R . Bourot-Denise . M . et al . The Paris meteorite, the least altered CM chondrite so far . 2014GeCoA.124..190H . Geochimica et Cosmochimica Acta . Jan 2014 . 124 . 190 . 10.1016/j.gca.2013.09.014.
- Bourot-Denism . M . Zanda . B . Marrocchi . Y . Greenwood . R . Pont . S . Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs . 2010LPI....41.1683B . 41st LPSC . Mar 2010 . 1683. 1683 .
- Ostrowski . D . Lacy . C . Gietzen . K . Sears . D . IRTF spectra for 17 asteroids from the C and X complexes: A discussionof continuum slopes and their relationships to C chondrites and phyllosilicates . Icarus . Feb 2011 . 212 . 2 . 682–696. 10.1016/j.icarus.2011.01.032 . 2011Icar..212..682O .
- Alexander . C . McKeegan . K . Altwegg . K . Kathrin Altwegg. Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets . Space Science Reviews . Feb 2018 . 214 . 1 . 36. 10.1007/s11214-018-0474-9 . 30842688 . 6398961 . 2018SSRv..214...36A .
- Trigo-Rodríguez . J . Rimola . A . Tanbakouei . S . Cabedo Soto . V . Lee . M . Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early earth . Space Science Reviews . Feb 2019 . 215 . 1 . 18 . 2019SSRv..215...18T . 1902.00367 . 10.1007/s11214-019-0583-0 . 119196857 .
- D’Angelo . M . Cazaux . S . Kamp . I . Thi . W . Woitke . P . On water delivery in the inner solar nebula: Monte Carlo simulations of forsterite hydration . Astronomy & Astrophysics . Feb 2019 . 622 . A208 . 10.1051/0004-6361/201833715. 2019A&A...622A.208D . 1808.06183 . 55659350 .
- Gooding . J . Zolensky . M . Thermal Stability Of Tochilinite . LPSC XVIII . Mar 1987 . 343.
- Nakamura . T . Matsuoka . M . Yamashita . S . Sato . Y . Mogi . K . Enokido . Y . Nakata . A . Okumura . S . Furukawa . Y . Zolensky . M . Mineralogical, Spectral, and Compositional Changes During Heating of Hydrous Carbonaceous Chondrites . Lunar and Planetary Science XLVIII . Mar 2017 . 1954.
- Beck . P . Quirico . E . Montes-Hernandez . G . Bonal . L . Bollard . J . Orthous-Daunay . F . Howard . K . Schmitt . B . Brissaud . O . Deschamps . F . Wunder . B . Guillot . S . Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids . Geochimica et Cosmochimica Acta . 2010 . 74 . 16 . 4881–4892. 10.1016/j.gca.2010.05.020 . 2010GeCoA..74.4881B .
- Buseck . P . Hua . X . Matrices Of Carbonaceous Chondrite Meteorites . Annu. Rev. Earth Planet. Sci. . 1993 . 21 . 255–305. 10.1146/annurev.ea.21.050193.001351 . 1993AREPS..21..255B .
- Takir . D . Emery . J . Mcsween . H . Hibbitts . C . Clark . R . Pearson . N . Wang . A . Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites . Meteoritics & Planetary Science . Sep 2013 . 48 . 9 . 1618–1637. 2013M&PS...48.1618T . 10.1111/maps.12171 . 129003587 . free .
- Morbidelli . A. . Chambers . J . Lunine . Jonathan I. . Petit . Jean-Marc . Robert . F. . Valsecchi . G. . Cyr . K. . Source regions and timescales for the delivery of water to the Earth . Meteoritics & Planetary Science . 2000 . 35 . 6 . 1309–20. 10.1111/j.1945-5100.2000.tb01518.x . 2000M&PS...35.1309M . free .
- Hallis . L . D/H ratios of the inner Solar System . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 28 May 2017 . 375 . 2094. 20150390 . 2017RSPTA.37550390H . 10.1098/rsta.2015.0390 . 28416726 . 5394254 .
- Alexander . C . Bowden . R . Fogel . M . Howard . K . Herd . C . Nittler . L . The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets . Science . 10 Aug 2012 . 337 . 6095 . 721–723. 10.1126/science.1223474 . 22798405 . 2012Sci...337..721A . 206542013 . free .
- Book: Roedder . E . Yasinskaya . A . Fluid Inclusion Research- Proc. COFFI 2 . 1969 . 149–153 . Inclusions in stony meteorites.
- Fieni . C . Bourot-Denise . M . Pellas . P . Touret . J . Aqueous fluid inclusions in feldspars and phosphates from Peetz Chondrite . Meteoritics . 1978 . 13 . 460–461. 1978Metic..13..460F .
- Mattey . D . Pillinger . C . Fallick . A . H isotopic composition of water in fluid inclusions in the Peetz L6 Chondrite . Meteoritics & Planetary Science . 1983 . 18 . 348.
- Rudnick . R . Ashwal . L . Henry . D . Gibson . E . Fluid inclusions in stony meteorites—A cautionary note. Journal of Geophysical Research: Solid Earth. Mar 1984 . 90 Suppl . 669. C669-75 . 10.1029/jb090is02p0c669 . 11542002 .
- Bodnar . R . Zolensky . M . Title: Fluid Inclusions in Meteorites: Are They Useful, and Why are They So Hard to Find? . Meteoritics & Planetary Science . 2000 . 35 . 5 . A29.
- Saylor . J . Zolensky . M . Bodnar . R . Le . L . Schwandt . C . Fluid Inclusions In Carbonaceous Chondrites . LPS Xxxii . Mar 2001 . 1875. 1875 . 2001LPI....32.1875S .
- Zolensky . M . Liquid Water in Asteroids: Evidence from Fluid Inclusions in Meteorites . Astrobiology Science Conference 2010 . 1538 . 2010 . 5278. 5278 . 2010LPICo1538.5278Z .
- Yurimoto . H . Itoh . S . Zolensky . M . Isotopic compositions of asteroidal liquid water trapped in fluid inclusionsof chondrites . Geochemical Journal . Oct 2014 . 48 . 6 . 549–560. 10.2343/geochemj.2.0335 . 2014GeocJ..48..549Y . free . 2115/57641 . free .
- Pearson . V . Sephton . M . Franchi . I . Gibson . J . Gilmour . I . Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions . 2006M&PS...41.1899P . Meteoritics & Planetary Science . Jan 2010 . 41 . 12 . 1899. 10.1111/j.1945-5100.2006.tb00459.x . 59383820 .
- Hayes . J . Organic constituents of meteorites—a review . Geochimica et Cosmochimica Acta . Sep 1967 . 31 . 9 . 1395–1440 . 10.1016/0016-7037(67)90019-1.
- Botta . O . Bada . J . 93938395 . Extraterrestrial Organic Compounds in Meteorites . Surveys in Geophysics . Jan 2002 . 23 . 5 . 411–67 . 10.1023/A:1020139302770. 2002SGeo...23..411B .
- Holweger . H . The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites . 10.1016/0012-821X(77)90116-9 . Earth and Planetary Science Letters . Feb 1977 . 34 . 1 . 152. 1977E&PSL..34..152H .
- Anders . E . Ebihara . M . Solar-system abundances of the elements . 2014pacs.book...15P . Geochimica et Cosmochimica Acta . Nov 1982 . 46 . 11 . 2363. 10.1016/0016-7037(82)90208-3 .
- Suess . H . 11969464 . Die kosmische häufigkeit der chemischen elemente . 10.1007/BF02149939 . 18146573 . Experientia . 1949 . 5 . 7 . 266–70 .
- Suess . H Urey H . Abundances of the Elements . 10.1103/RevModPhys.28.53 . Rev. Mod. Phys. . Jan 1956 . 28 . 1 . 53. 1956RvMP...28...53S .
- Asplund . M . Grevesse . N . Sauval . AJ . Scott . P . The chemical composition of the Sun . 10.1146/annurev.astro.46.060407.145222 . Annual Review of Astronomy & Astrophysics . 2009 . 47 . 1 . 481–522 . 2009ARA&A..47..481A . 0909.0948 . 17921922 .
- Anders . E . 122077103 . Origin, age, and composition of meteorites . 10.1007/BF00177954 . Space Science Reviews . Dec 1964 . 3 . 5–6 . 5. 1964SSRv....3..583A .
- Book: Goswami . A . Eswar Reddy . B. Principles and Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on 'Synthesis of Elements in Stars' held at Kodaikanal Observatory, India, April 29 - May 13, 2008 . 2010 . Springer-Verlag . Heidelberg . 978-3-642-10351-3 . 379 . Solar system abundances of the elements.
- Book: Davis . A . Planets, Asteroids, Comets and The Solar System, Treatise on Geochemistry, Vol. 2 . 2014 . Elsevier . 978-0080999432 . 21 . 2nd . Solar System Abundances of the Elements.
- Russell . C . Foreword . Space Science Reviews . Jan 2003 . 105 . 3 . vii. Special Issue: The Genesis Discovery Mission
- Leitner . J . Hoppe . P . Metzler . K . Haenecour . P . Floss . C . Vollmer . C . The Presolar Grain Inventory Of CM Chondrites . 2015LPICo1856.5178L . 78th Meteoritical Society Meeting . 2015 . 5178.
- Huss . G . Meshik . A . Smith . J . Hohenberg . C . Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula . 10.1016/j.gca.2003.07.019 . Geochimica et Cosmochimica Acta . Dec 2003 . 67 . 24 . 4823. 2003GeCoA..67.4823H .
- Zinner . E . Amari . S . Guinness . R . Nguyen . A . Presolar spinel grains from the Murray and Murchison carbonaceous chondrites . 10.1016/S0016-7037(03)00261-8 . Geochimica et Cosmochimica Acta . Dec 2003 . 67 . 24 . 5083. 2003GeCoA..67.5083Z .
- Moissan . H . Investigation of the Canon Diablo Meteorite . Comptes Rendus de l'Académie des Sciences de Paris . 1904 . 139 . 773.
- Ksanda . C . Henderson . E . Identification of diamond in the Canyon Diablo iron . American Mineralogist . 1939 . 24 . 677.
- Laspeyres . H . Kaiser . E . Quartz and Zerkonkrystall im Meteoreisen Toluca von Mexico . Zeitschrift für Krystallographie und Mineralogie . 1895 . 24 . 485.
- Bernatowicz . T . Amari . S . Zinner . E . Lewis . R . Interstellar Grains within Interstellar Grains . Astrophysical Journal Letters . Jun 1991 . 373 . L73 . 10.1086/186054. 1991ApJ...373L..73B .
- Brett . R . Cohenite: its occurrence and a proposed origin . 1967GeCoA..31..143B . Geochimica et Cosmochimica Acta . 1967 . 31 . 2 . 143. 10.1016/S0016-7037(67)80042-5 .
- Nagy . B . Andersen . C . Electron probe microanalysis of some carbonate, sulfate and phosphate minerals in the Orgueil meteorite . American Mineralogist . 1964 . 49 . 1730.
- Sofe . M . Lee . M . Lindgren . P . Smith . C . CL Zoning of Calcite in CM Carbonaceous Chondrites and its Relationship to Degree of Aqueous Alteration . 74th Meteoritical Society Meeting . 2011 . 5392.
- de Leuw . S . Rubin . A . Wasson . J . Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites . 10.1111/j.1945-5100.2010.01037.x . Meteoritics & Planetary Science . Jul 2010 . 45 . 4 . 513. 2010M&PS...45..513D . 14208785 .
- Lee . M . Lindgren . P . Sofe . M . Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration . 10.1016/j.gca.2014.08.019 . Geochimica et Cosmochimica Acta . Nov 2014 . 144 . 126. 2014GeCoA.144..126L . free .
- Cody . G . Alexander . C . NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups . 10.1016/j.gca.2004.08.031 . Geochimica et Cosmochimica Acta . Feb 2005 . 69 . 4 . 1085. 2005GeCoA..69.1085C .
- Cronin . J Pizzarello S . Frye . J . 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites . 1982Metic..17..200C . Geochimica et Cosmochimica Acta . Feb 1987 . 51 . 2 . 299–303 . 10.1016/0016-7037(87)90242-0 . 11542083 .
- Easton . A . Lovering . J . The analysis of chondritic meteorites . 10.1016/0016-7037(63)90040-1 . Geochimica et Cosmochimica Acta . 1963 . 27 . 7 . 753. 1963GeCoA..27..753E .
- Moss . A . Hey . M . Elliott . C . Easton . A . Methods for the Chemical Analysis of Meteorites II: The major and some minor constituents of chondrites . 10.1180/minmag.1967.036.277.17 . Mineralogical Magazine . Mar 1967 . 36 . 277 . 101. 1967MinM...36..101M .
- Briggs . M . Mamikunian . G . 10422212 . Organic Constituents of the Carbonaceous Chondrites . 10.1007/BF00212447 . Space Science Reviews . May 1963 . 1 . 4 . 57–85 . 11881656 . 1963SSRv....1..647B .
- Remusat . L . Le Guillou . C . Rouzaud . J . Binet . L . Derenne . S . Robert . F . Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM . 10.1111/j.1945-5100.2008.tb01115.x . Meteoritics & Planetary Science . Jan 2007 . 43 . 7 . 1099. 98683674 .
- Degens . E . Bajor . M . 42359207 . Amino acids and sugars in the bruderheim and Murray meteorite . 10.1007/BF01178050 . Die Naturwissenschaften . 1963 . 49 . 24 . 605.
- Kaplan . I . Degens . E . Reuter . J . Organic compounds in stony meteorites . 10.1016/0016-7037(63)90045-0 . Geochimica et Cosmochimica Acta . Jul 1963 . 27 . 7 . 805. 1963GeCoA..27..805K .
- Book: Kallman Bijl . H . Space Research . 1960 . North-Holland Publishing Company . Amsterdam . 1171 . Extraterrestrial Life: Some Organic Constituents of Meteorites.
- Briggs . M . 40559837 . Organic constituents of meteorites . 10.1038/1911137a0 . Nature . 1961 . 191 . 4794 . 1137. 1961Natur.191.1137B .
- Hamilton . P. B. . 4189815 . Amino acids on hands . 10.1038/205284b0 . 14270714 . Nature . 1965 . 205 . 4968 . 284–5 . 1965Natur.205..284H .
- Oró . J . Skewes . H . 4275454 . Free Amino-Acids on Human Fingers: The Question of Contamination in Microanalysis . 10.1038/2071042a0 . 5866306 . Nature . 1965 . 207 . 5001 . 1042–5 . 1965Natur.207.1042O .
- Nuevo . M . Cooper . G . Sandford . S . Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites . 10.1038/s41467-018-07693-x . 30563961 . 6299135 . Nature Communications . 2018 . 9 . 1 . 5276. 2018NatCo...9.5276N .
- Kvenvolden . K . Lawless . J . Pering . K . Peterson . E . Flores . J . Ponnamperuma . C . 4147981 . Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite . 10.1038/228923a0 . 5482102 . Nature . Dec 1970 . 228 . 5275 . 923–6 . 1970Natur.228..923K .
- Oró . J . Gibert . J . Lichtenstein . H . Wikstrom . S . Flory . D . 4240808 . Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite . 10.1038/230105a0 . 4927006 . Nature . Mar 1971 . 230 . 5289 . 105–6 . 1971Natur.230..105O .
- Kvenvolden . K . Lawless . J . Pering . K . 4147981 . Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite . Nature . Dec 1970 . 228 . 5275 . 923–926 . 10.1038/228923a0. 5482102 . 1970Natur.228..923K .
- Koga . T . Naraoka . H . A new family of extraterrestrial amino acids in the Murchison meteorite . 10.1038/s41598-017-00693-9 . 28377577 . 5428853 . Scientific Reports . Apr 2017 . 7 . 1 . 636. 2017NatSR...7..636K .
- Book: Mullie . F Reisse J . Organic matter in carbonaceous chondrites, in Topics In Current Chemistry-Series 139 . 1987 . Springer . New York . 83–117.
- Engel . M . Macko . S . 4411982 . Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite . 10.1038/38460 . 9305838 . Nature . Sep 1997 . 389 . 6648 . 265–8 . 1997Natur.389..265E .
- Elsila . J . Charnley . S . Burton . A . Glavin . D . Dworkin . J . Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways . 10.1111/j.1945-5100.2012.01415.x . Meteoritics & Planetary Science. Sep 2012 . 47 . 9 . 1517. 2012M&PS...47.1517E . 2060/20120014482 . 19154600 . free .
- Botta . O . Martins . Z . Ehrenfreund . P . Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites . Meteoritics & Planetary Science . Jan 2007 . 42 . 1 . 81–92 . 10.1111/j.1945-5100.2007.tb00219.x. 2007M&PS...42...81B . free .
- Smith . K . House . C . Arevalo . R . Dworkin . J . Callahan . M . Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites . Nature Communications . Jun 2019 . 10 . 1 . 2777 . 10.1038/s41467-019-10866-x. 31239434 . 6592946 . 2019NatCo..10.2777S .
- Stoks . P . Schwartz . A . Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation . Geochimica et Cosmochimica Acta . Apr 1981 . 45 . 4 . 563–69 . 10.1016/0016-7037(81)90189-7. 1981GeCoA..45..563S .
- Book: Hayatsu . R Anders E . Organic compounds in meteorites and their origins, in Topics in Current Chemistry 99 . 1981 . Springer-Verlag . Berlin, Heidelberg . 978-3-540-10920-4 . 1–37.
- Schmitt-Kopplin . P . Gabelica . Z . Gougeon . R . High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall . PNAS . Feb 2010 . 107 . 7 . 2763–2768 . 10.1073/pnas.0912157107. 20160129 . 2840304 . 2010PNAS..107.2763S . free .
- Yamashita . Y . Naraoka . H . Two homologous series of alkylpyridines in the Murchison meteorite . Geochemical Journal . Jan 2014 . 48 . 6 . 519–525. 10.2343/geochemj.2.0340 . 2014GeocJ..48..519Y . free .
- Mueller . G . The properties and theory of genesis of the carbonaceous complex within the cold bokevelt meteorite . 10.1016/0016-7037(53)90061-1 . Geochimica et Cosmochimica Acta . Aug 1953 . 4 . 1–2 . 1. 1953GeCoA...4....1M .
- Engel . M Nagy, B . 4341990 . Distribution and enantiomeric composition of amino acids in the Murchison meteorite . 10.1038/296837a0 . Nature . Apr 1982 . 296 . 5860 . 837. 1982Natur.296..837E .
- Pizzarello . S . Yarnes . C . Chiral molecules in space and their possible passage to planetary bodies recorded by meteorites . 10.1016/j.epsl.2018.05.026 . Earth and Planetary Science Letters . Aug 2018 . 496 . 198. 2018E&PSL.496..198P . 102863818 .
- Pizzarello . S . Yarnes . C . The soluble organic compounds of the Mukundpura meteorite: A new CM chondrite fall . 10.1016/j.pss.2018.07.002 . Planetary and Space Science . Dec 2018 . 164 . 127. 2018P&SS..164..127P . 125844045 .
- Meierhenrich . U . Muñoz Caro . G . Bredehöft . J . Jessberger . E . Thiemann . W . Identification of diamino acids in the Murchison meteorite . PNAS . 22 Jun 2004 . 101 . 25 . 9182–86 . 10.1073/pnas.0403043101. 15194825 . 438950 . 2004PNAS..101.9182M . free .
- Martins . Z . Modica . P . Zanda . B . Le Sergeant d'Hendecourt . L . The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite . Meteoritics & Planetary Science . May 2015 . 50 . 5 . 926–43 . 10.1111/maps.12442. 2015M&PS...50..926M . 10044/1/25091 . 95549163 . free .
- Rudraswami . N . Naik . A . Tripathi . R . Bhandari . N . Karapurkar . S . Prasad . M . Babu . E . Sarathi . V . Chemical, isotopic and amino acid composition of Mukundpura CM2.0 (CM1) chondrite: Evidence of parent body aqueous alteration . Geoscience Frontiers . Feb 2018 . 10 . 2 . 495–504 . 10.1016/j.gsf.2018.02.001. free .
- Reynolds . J . Isotopic Composition of Primordial Xenon . Phys. Rev. Lett. . Apr 1960 . 4 . 7 . 351–354 . 10.1103/PhysRevLett.4.351. 1960PhRvL...4..351R .
- Heymann . D . Mazor . E . Light-Dark Structure and Rare Gas Content of the Carbonaceous Chondrite Nogoya . Journal of Geophysical Research: Atmospheres . May 1967 . 72 . 10 . 2704–2707 . 10.1029/JZ072i010p02704. 1967JGR....72.2704H .
- Book: Wasson . J . Meteorites: Their record of early solar-system history . 1985 . W. H. Freeman and Co. . New York . 978-0716717003 . 59.
- Goswami . J . Lal . D . Wilkening . L . 121335431 . Title: Gas-rich meteorites - Probes for particle environment and dynamical processes in the inner solar system . Space Science Reviews . Jan–Feb 1984 . 37 . 111–159 . 10.1007/BF00213959.
- Lewis . R . Srinivasan . B . Anders . E . Host Phase of a Strange Xenon Component in Allende . Science . 26 Dec 1975 . 490 . 4221 . 1251–1262 . 10.1126/science.190.4221.1251. 1975Sci...190.1251L . 94192045 .
- Huss . G . Lewis . R . Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins . Meteoritics . 1994 . 29 . 6 . 791. 10.1111/j.1945-5100.1994.tb01094.x . 1994Metic..29..791H . free .
- Bernatowicz . T . Fraundorf . G . Ming . T . Anders . E . Wopenka . B . Zinner . E . Fraundorf . P . 4361807 . Evidence for interstellar silicon carbide in the Murray carbonaceous meteorite . Nature . 1987 . 330 . 728–730. 10.1038/330728a0 .
- Zinner . E . Ming . T . Anders . E . 4306270 . Large isotopic anomalies of silicon, carbon, nitrogen, and noble gases in interstellar silicon carbode in the Murray carbonaceous meteorite . Nature . 1987 . 330 . 730. 10.1038/330730a0 .
- Amari . S . Anders . E . Virag . A . Zinner . E . 10272604 . Interstellar graphite in meteorites . Nature . 1990 . 345 . 6272 . 238. 10.1038/345238a0 . 1990Natur.345..238A .
- Black . D . On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites . Geochimica et Cosmochimica Acta . Mar 1972 . 36 . 3 . 377–394 . 10.1016/0016-7037(72)90029-4. 1972GeCoA..36..377B .
- Füri . E . Aléon-Toppani . A . Marty . B . Libourel . G . Zimmermann . L . Effects of atmospheric entry heating on the noble gas and nitrogen content of micrometeorites . Earth and Planetary Science Letters . Sep 2013 . 377 . 1–12 . 10.1016/j.epsl.2013.07.031. 2013E&PSL.377....1F .
- Nakamura . T . Noguchi . T . Ozono . Y . Osawa . T . Nagao . K . Mineralogy of Ultracarbonaceous Large Micrometeorites . 68th Meteoritical Society . 12 Sep 2005 . 5046.
- Clayton . R . Onuma . N . Grossman . L . Mayeda . T . Distribution of the pre-solar component in Allende and other carbonaceous chondrites . 10.1016/0012-821X(77)90005-X . Earth and Planetary Science Letters . Mar 1977 . 32 . 2 . 209. 1977E&PSL..34..209C .
- Clayton . R . Mayeda . T . Oxygen isotope studies of carbonaceous chondrites . 10.1016/S0016-7037(99)00090-3 . Geochimica et Cosmochimica Acta . Jul 1999 . 63 . 13–14 . 2089. 1999GeCoA..63.2089C .
- Greenwood . R . Howard . K . Franchi . I . Zolensky . M . Buchanan . P . Gibson . J . Oxygen Isotope Evidence For The Relationship Between CM And CO Chondrites: Could They Both Coexist On A Single Asteroid? . 45th LPSC . Mar 2014 . 2610.
- Hanna . R . Ketcham . R . Zolensky . M . Behr . W . 10.1016/j.gca.2015.09.005 . Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite . Geochimica et Cosmochimica Acta . Dec 2015 . 171 . 256. 2015GeCoA.171..256H . free .
- Merrill . G . On metamorphism in meteorites . 10.1130/GSAB-32-395 . Bull. Geol. Soc. Am. . 1921 . 32 . 4 . 395. 1921GSAB...32..395M .
- Hildebrand . A . McCausland . P . Brown . P . Longstaffe . F . Russell . S . Tagliaferri . E . The fall and recovery of the Tagish Lake meteorite . 2006M&PS...41..407H . Meteoritics & Planetary Science . 2006 . 41 . 3 . 407. 10.1111/j.1945-5100.2006.tb00471.x . free .
- Flynn . G . Consolmagno . G . Brown . P . Macke . R . Physical properties of the stone meteorites: Implications for the properties of their parent bodies . 10.1016/j.chemer.2017.04.002 . Geochemistry . Sep 2018 . 78 . 3 . 269. 2018ChEG...78..269F . free .
- Heck . P . Schmitz . B . Bottke . W . Rout . S . Kita . N . Rare meteorites common in the Ordovician period . Nature Astronomy . Jan 2017 . 1 . 2 . 0035 . 10.1038/s41550-016-0035. 2017NatAs...1E..35H . 102488048 .
- Book: Grady . M . Hutchison . R . Meteorites: Flux with Time and Impact Effects . Geological Society of London . 1998 . 9781862390171 . 67–70. sec. The frequency of meteorite types
- Cassidy . W . Rancitelli . L . Antarctic Meteorites: The abundant material being discovered in Antarctica may shed light on the evolution of meteorite parent bodies and the history of the solar system . 27851347 . American Scientist . Mar 1982 . 70 . 2 . 156–164 .
- Book: Lauretta . D . McSween . H . Meteorites and the Early Solar System II . 2006 . University of Arizona Press . Tucson . 9780816525621 . 853. Ch. Weathering of Chondritic Meteorites, Bland, P., Zolensky, M., Benedix, G., Sephton, M.
- Web site: Korotev . Randy L. . Some Meteorite Statistics . Department of Earth and Planetary Sciences, Washington University in St. Louis . Washington University in St. Louis . 14 Sep 2019.
- Book: Encyclopedia of Planetary Science. Encyclopedia of Earth Science Series . 1997 . Springer . Dordrecht . 978-0-412-06951-2 . 486. Chapter: Meteorite parent bodies, Britt, D., Lebofsky, L.
- Cloutis . E . Binzel . R . Gaffey . M . Establishing Asteroid–Meteorite Links . 10.2113/gselements.10.1.25 . Elements . Feb 2014 . 10 . 25.
- Lee . M Cohen B King A Greenwood R . The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311 . 10.1016/j.gca.2019.07.027 . Geochimica et Cosmochimica Acta . Jul 2019 . 257. 224–244 . 2019GeCoA.264..224L . free .
- Web site: Asteroids (from the NEAR press kit) . NSSDC . 27 Oct 2019.
- Book: Orgel . L . Evaluating the Biological Potential in Samples Returned from Planetary Satellites and Small Solar System Bodies: Framework for Decision Making . 1998 . National Academy of Sciences National Academy Press . Washington DC . 978-0-309-06136-0 . 4 Asteroids and Meteorites. "it is likely that the C-type asteroids (which are overwhelmingly the most abundant type in the main belt, especially the middle and outer parts) are represented in various meteorite collections by carbonaceous chondrites"
- Web site: Asteroids: Structure and composition of asteroids . ESA- Science & Exploration . European Space Agency . 27 Oct 2019.
- Burbine . T . Advances in determining asteroid chemistries and mineralogies . 10.1016/j.chemer.2015.09.003 . Chemie der Erde . 2016 . 76 . 2 . 181. 2016ChEG...76..181B . free .
- Lantz . C . Clark . B . Barucci . M . Lauretta . D . Evidence for the effects of space weathering spectral signatures on low albedo asteroids . 10.1051/0004-6361/201321593 . Astronomy and Astrophysics . May 2013 . 554 . A138. 2013A&A...554A.138L . free .
- Matsuoka . M . Nakamura . T . Kimura . Y . Hiroi . T . Nakamura . R . Okumura . S . Sasaki . S . Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids . 10.1016/j.icarus.2015.02.029 . Icarus . Mar 2015 . 254 . 135. 2015Icar..254..135M .
- Thompson . M . Loeffler . M . Morris . R . Keller . L . Christoffersen . R . 10.1016/j.icarus.2018.09.022 . Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite . Icarus . Feb 2019 . 319 . 499. 2019Icar..319..499T . free .
- Bland . P . Alard . O . Benedix . G . Kearsley . A . Volatile fractionation in the early solar system and chondrule/matrix complementarity . 10.1073/pnas.0501885102 . 16174733 . 1224360 . PNAS . Sep 2005 . 102 . 39 . 13755–60 . 2005PNAS..10213755B . free .
- Franchi . I . Greenwood . R . Howard . K . King . A . Lee . M . Anand . M . Findlay . R . Oxygen Isotope Variation Of CM And Related Chondrites: Multiple Parent Bodies Or A Single Heterogeneous Source? . Meteoritical Society Meeting, 2019 . 2019 . 6482.
- Lipschutz . M . Zolensky . M . Bell . S . New Petrographic And Trace Element Data On Thermally MetamorphosedChondrites . Antarctic Meteorite Research . Mar 1999 . 12 . 57–80.
- Book: Kigoshi . K . Matsuda . E . Radiocarbon datings of Yamato meteorites . Lunar and Planetary Institute . Houston . 58–60. in International Workshop on Antarctic Meteorites, Annexstad J. et al., eds.
- Mueller . G . 4223453 . Significance of Inclusions in Carbonaceous Meteorites . Nature . Apr 1966 . 210 . 5032 . 151–155 . 10.1038/210151a0. 1966Natur.210..151M . free .
- Zolensky . M . Weisberg . M . Buchanan . P . Mittlefehldt . D . Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon . Meteoritics & Planetary Science . Jul 1996 . 31 . 4 . 518–37 . 10.1111/j.1945-5100.1996.tb02093.x. 1996M&PS...31..518Z .
- Herrin . J . Zolensky . M . Cartwright . J . Mittlefehldt . D . Ross . D . Carbonaceous Chondrite-Rich Howardites; The Potential For Hydrous Lithologies On The HED Parent . Lunar and Planetary Science Conference . 2011LPI....42.2806H . 42nd LPSC . Mar 2011 . 1608. 2806 .
- Web site: Martel . L V . Kaidun--A Meteorite with Everything but the Kitchen Sink . Planetary Science Research Discoveries . 6 Oct 2019.