CFAP299 explained

Cilia- and flagella-associated protein 299 (CFAP299), is a protein that in humans is encoded by the CFAP299 gene. CFAP299 is predicted to play a role in spermatogenesis and cell apoptosis.[1]

Gene

Location

CFAP299 gene is located at chromosome 4, 4q21.21 spanning 642,492 bases from position 80,321,265 to position 80,963,756 on the plus strand. CFAP299 gene is also known as C4orf22, chromosome 4 Open Reading Frame 22 and Uncharacterized Protein C4orf22.[2] CFAP299 gene is located near MRPS25P1 and BMP3 and it has 13 exons.[3]

Expression

CFAP299 is widely expressed in a variety of normal tissue in Homo sapiens . CFAP299 is highly expressed in testis, trachea, lung, fetal lung and epididymis.[4] In terms of health state, CFAP299 has a decreased expression level in glioma, germ cell tumors and chondrosarcoma. An even higher expression of CFAP299 is shown in condition of soft tissue tumor and muscle tissue tumor. CFAP299 is only exist in fetus and adult.[5]

Promoter

The promoter of CFAP299 gene is predicted to present 1000 base pairs upstream of the start of transcription. A variety of transcription factors such as CCAAT binding factors, X-box binding factors and AT rich interactive domain factor bind to promoter to regulate the sequence.[6]

mRNA

Splice variants

CFAP299 has 9 alternatively spliced variants and 1 unspliced form.[7]

Protein

General feature

CFAP299 protein contains 233 amino acids in length. The molecular weight of Homo sapiens CFAP299 protein is 26869 Da and the predicted isoelectric point is 5.28. Total number of negatively charged residues is 39 and total number of positively charged residues is 33.[8] Aspartic acid has a higher frequency in CFAP299 protein than in other human proteins.[9]

Isoforms

CFAP299 protein has two important isoforms. Cilia- and flagella-associated protein 299 isoform 1 is the longest isoform and cilia- and flagella-associated protein 299 isoform 2 is chosen as canonical sequence,[10] which is also the target for this article.

Domains

There is only one conserved domain DUF4464 from position 13 to position 232 in CFAP299 protein. This domain belongs to DUF4464 family, which is found in eukaryotes and the proteins in this family has a length of 224 to 241 amino acids.[11] This domain is conserved through the orthologs of CFAP299 as indicated by BLAST.

Secondary structure

CFAP299 proteins secondary structure is dominated by alpha helix and random coil as predicted by GOR4.[12]

Tertiary structure

Tertiary structure of CFAP299 protein predicted by I-TASSER showed that the protein is comprised by alpha helix and coils.[13]

Post-translational modifications

CFAP299 is predicted to undergo phosphorylation in various site as shown in graph.[14] CFAP299 also predicted to have sumoylation site in position 58, 137 and 232 and two SUMO-interaction Motifs in position 45-49 and 212-216.[15]

Subcellular localization

CFAP299 protein is targeted to cytoplasm.[16]

Interacting proteins

CFAP299 protein is believed to interact with amyloid beta (A4) precursor protein (APP)[17] and BCL2-associated athanogene 3 (BCL2).[18]

Evolution

OrthologS

CFAP299 protein orthologs exists in mammals, reptiles, birds, amphibians, fish, sponges, sea urchins, insects, fungi and plants. Its most distant relative appear in plants. The table below shows orthologs found by BLAST.[19]

Genus and speciesCommon nameTaxonomic GroupDate of divergenceaccession numbersequence lengthsequence identitysequence similarity
Homo SapiensHumanMammalia0NP_689983.2233100%100%
Ochotona princepsAmerican pikaLagomorpha88XP_004590671.123385%93%
Mus musculusHouse mouseRodentia88NP_00101978523385%91%
Eumetopias jubatusSteller sea lionCarnivora94XP_02798003123386%93%
Erinaceus europaeusEuropean hedgehogSoricomorpha94XP_00751856223383%93%
Ornithorhynchus anatinusplatypusMonotremata169XP_00765976916474%88%
Pogona vitticepsCentral bearded dragonReptilia320XP_02065882923672%85%
Anolis carolinensisGreen anoleReptilia320XP_00811809319371%85%
Dromaius novaehollandiaeEmuAves320XP_02595915522664%81%
Anas platyrhynchosMallardAves320XP_027312784.124358%75%
Xenopus laevisAfrican clawed frogAmphibia353NP_00108872223373%89%
Nanorana parkeriXizang Plateau frogAmphibia353XP_018414504.123373%88%
Danio rerioZebrafishActinopterygii432NP_00110859623960%77%
Callorhinchus miliiAustralian ghostsharkChondrichthyes465XP_00789515723568%82%
Strongylocentrotus purpuratusPacific purple sea urchinEchinoidea627XP_01166300223666%80%
Nematostella vectensisStarlet sea anemoneAnthozoa685XP_001619741.119961%70%
Drosophila melanogasterFruit flyInsecta794NP_650260.123331%46%
Amphimedon queenslandicaSpongeDemospongiae951.8XP_00338244623564%80%
Batrachochytrium dendrobatidisChytridiomycetesAmphibian chytrid fungus1150XP_00668137223861%78%
Physcomitrella patensSpreading earthmossBryopsida1624XP_02437910625550%65%

Paralog

There are no paralogs for CFAP299.

Clinical significance

CFAP299 expression is lowered in people with teratozoospermia,  a condition that causes abnormal morphology of sperm and decreased fertility.[20]

In airway epithelial cells that had excessive mucous secretion, a condition that simulated chronic lung disease, CFAP299 showed a reduced expression.[21]

Notes and References

  1. Li H, Dai Y, Luo Z, Nie D . Cloning of a new testis-enriched gene C4orf22 and its role in cell cycle and apoptosis in mouse spermatogenic cells . Molecular Biology Reports . 46 . 2 . 2029–2038 . April 2019 . 30820741 . 10.1007/s11033-019-04651-8 . 71147966 .
  2. Web site: GeneCards CFAP299. www.genecards.org. 2019-05-05.
  3. Web site: CFAP299 cilia and flagella associated protein 299 [Homo sapiens (human)] - Gene - NCBI]. www.ncbi.nlm.nih.gov. 2019-02-26.
  4. Web site: Home - GEO Profiles - NCBI. www.ncbi.nlm.nih.gov. 2019-05-02.
  5. Web site: Home - Nucleotide - NCBI. www.ncbi.nlm.nih.gov. 2019-05-05.
  6. Web site: Genomatix - NGS Data Analysis & Personalized Medicine. www.genomatix.de. 2019-05-03. 2001-02-24. https://web.archive.org/web/20010224072831/http://www.genomatix.de/. dead.
  7. Web site: AceView: Gene:FGF5andC4orf22, a comprehensive annotation of human, mouse and worm genes with mRNAs or ESTsAceView.. www.ncbi.nlm.nih.gov. 2019-05-02.
  8. Web site: ExPASy - ProtParam tool. web.expasy.org. 2019-05-03.
  9. Web site: SAPS Results. www.ebi.ac.uk. 2019-05-03.
  10. Web site: CFAP299 - Cilia- and flagella-associated protein 299 - Homo sapiens (Human) - CFAP299 gene & protein. www.uniprot.org. 2019-05-02.
  11. Web site: NCBI Conserved Domain Search. www.ncbi.nlm.nih.gov. 2019-05-03.
  12. Web site: NPS@ : GOR4 secondary structure prediction. npsa-prabi.ibcp.fr. 2019-05-05.
  13. Web site: I-TASSER server for protein structure and function prediction. zhanglab.ccmb.med.umich.edu. 2019-05-03.
  14. Web site: NetPhos 3.1 Server - prediction results. www.cbs.dtu.dk. 2019-05-05.
  15. Web site: GPS-SUMO: Prediction of SUMOylation Sites & SUMO-interaction Motifs. sumosp.biocuckoo.org. 2019-05-05. 2018-05-06. https://web.archive.org/web/20180506035609/http://sumosp.biocuckoo.org/showResult.php. dead.
  16. Web site: PSORT II Prediction. psort.hgc.jp. 2019-05-03.
  17. Oláh J, Vincze O, Virók D, Simon D, Bozsó Z, Tõkési N, Horváth I, Hlavanda E, Kovács J, Magyar A, Szũcs M, Orosz F, Penke B, Ovádi J . Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein . The Journal of Biological Chemistry . 286 . 39 . 34088–100 . September 2011 . 21832049 . 3190826 . 10.1074/jbc.m111.243907 . free .
  18. Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY, Xiong Q, Mo R, Li CY, Jeong JS, Jiang L, Blackshaw S, Bi LJ, Zhu H, Tao SC, Ge F . Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity . Molecular & Cellular Proteomics . 12 . 10 . 2804–19 . October 2013 . 23824909 . 3790292 . 10.1074/mcp.m112.025882 . free .
  19. Web site: BLAST: Basic Local Alignment Search Tool. blast.ncbi.nlm.nih.gov. 2019-02-26.
  20. Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich R, Rockett JC, Rawe VY, Quintana S, Diamond MP, Strader LF, Krawetz SA . Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs . Human Molecular Genetics . 16 . 7 . 763–73 . April 2007 . 17327269 . 10.1093/hmg/ddm012 . free .
  21. Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, Miller CA, Heier RF, Byers DE, Brett TJ, Holtzman MJ . IL-13-induced airway mucus production is attenuated by MAPK13 inhibition . The Journal of Clinical Investigation . 122 . 12 . 4555–68 . December 2012 . 23187130 . 3533556 . 10.1172/jci64896 .