Butson-type Hadamard matrix explained

In mathematics, a complex Hadamard matrix H of size N with all its columns (rows) mutually orthogonal, belongs to the Butson-type H(qN) if all its elements are powers of q-th root of unity,

(Hjk)q=1forj,k=1,2,...,N.

Existence

If p is prime and

N>1

, then

H(p,N)

can existonly for

N=mp

with integer m andit is conjectured they exist for all such cases with

p\ge3

. For

p=2

, the corresponding conjecture is existence for all multiples of 4.In general, the problem of finding all sets

\{q,N\}

such that the Butson-type matrices

H(q,N)

exist, remains open.

Examples

H(2,N)

contains real Hadamard matrices of size N,

H(4,N)

contains Hadamard matrices composed of

\pm1,\pmi

– such matrices were called by Turyn, complex Hadamard matrices.

q\toinfty

one can approximate all complex Hadamard matrices.

[FN]jk:=\exp[(2\pii(j-1)(k-1)/N]forj,k=1,2,...,N

belong to the Butson-type,

FN\inH(N,N),

while

FNFN\inH(N,N2),

FNFNFN\inH(N,N3).

D6:=\begin{bmatrix} 1&1&1&1&1&1\\ 1&-1&i&-i&-i&i\\ 1&i&-1&i&-i&-i\\ 1&-i&i&-1&i&-i\\ 1&-i&-i&i&-1&i\\ 1&i&-i&-i&i&-1\\ \end{bmatrix} \inH(4,6)

,

S6:=\begin{bmatrix} 1&1&1&1&1&1\\ 1&1&z&z&z2&z2\\ 1&z&1&z2&z2&z\\ 1&z&z2&1&z&z2\\ 1&z2&z2&z&1&z\\ 1&z2&z&z2&z&1\\ \end{bmatrix} \inH(3,6)

where

z=\exp(2\pii/3).

References

External links