In mathematics, a complex Hadamard matrix H of size N with all its columns (rows) mutually orthogonal, belongs to the Butson-type H(q, N) if all its elements are powers of q-th root of unity,
(Hjk)q=1 for j,k=1,2,...,N.
If p is prime and
N>1
H(p,N)
N=mp
p\ge3
p=2
\{q,N\}
H(q,N)
H(2,N)
H(4,N)
\pm1,\pmi
q\toinfty
[FN]jk:=\exp[(2\pii(j-1)(k-1)/N]forj,k=1,2,...,N
belong to the Butson-type,
FN\inH(N,N),
while
FN ⊗ FN\inH(N,N2),
FN ⊗ FN ⊗ FN\inH(N,N3).
D6:=\begin{bmatrix} 1&1&1&1&1&1\\ 1&-1&i&-i&-i&i\\ 1&i&-1&i&-i&-i\\ 1&-i&i&-1&i&-i\\ 1&-i&-i&i&-1&i\\ 1&i&-i&-i&i&-1\\ \end{bmatrix} \inH(4,6)
S6:=\begin{bmatrix} 1&1&1&1&1&1\\ 1&1&z&z&z2&z2\\ 1&z&1&z2&z2&z\\ 1&z&z2&1&z&z2\\ 1&z2&z2&z&1&z\\ 1&z2&z&z2&z&1\\ \end{bmatrix} \inH(3,6)
where
z=\exp(2\pii/3).