Business process modeling explained

Business process modeling (BPM), mainly used in business process management; software development, or systems engineering, is the action of capturing and representing processes of an enterprise (i.e. modeling them), so that the current business processes may be analyzed, applied securely and consistently, improved, and automated. BPM is typically orchestrated by business analysts, leveraging their expertise in modeling practices. Subject matter experts, equipped with specialized knowledge of the processes being modeled, often collaborate within these teams. Alternatively, process models can be directly derived from digital traces within IT systems, such as event logs, utilizing process mining tools.

Overview

According to the Association of Business Process Management Professionals (ABPMP), business process modeling is one discipline of business process management that comprises the following five disciplines:[1] (Chapter 1.4 CBOK® structure) ← automatic translation from German

However, a completely separate consideration of the disciplines is not possible: Business process modeling always requires a business process analysis for modeling the as-is processes (see section Analysis of business activities) or specifications from process design for modeling the to-be processes (see sections Business process reengineering and Business process optimization).

The focus of business process modeling is on the representation of the flow of actions (activities), according to Hermann J. Schmelzer and Wolfgang Sesselmann consisting "of the cross-functional identification of value-adding activities that generate specific services expected by the customer and whose results have strategic significance for the company. They can extend beyond company boundaries and involve activities of customers, suppliers, or even competitors."[2] (Chapter 2.1 Differences between processes and business processes) ← automatic translation from German

But also other qualities (facts) such as data and business objects (as inputs/outputs, formal organizations and roles (responsible/accountable/consulted/informed persons, see RACI), resources and IT-systems as well as guidelines/instructions (work equipment), requirements, key figures etc. can be modeled.

The more of these characteristics are incorporated into the business process modeling, the better the abstraction of the business process models reflects reality - and the more complex the business process models become. "To reduce complexity and improve the comprehensibility and transparency of the models, the use of a view concept is recommended."[3] (Chapter 2.4 Views of process modeling) ← automatic translation from German There is also a brief comparison of the view concepts of five relevant German-speaking schools of business informatics: 1) August W. Scheer, 2) Hubert Österle, 3) Otto K. Ferstl and Elmar J. Sinz, 4) Hermann Gehring and 5) Andreas Gadatsch.

The term views (August W. Scheer, Otto K. Ferstl and Elmar J. Sinz, Hermann Gehring and Andreas Gadatsch) is not used uniformly in all schools of business informatics - alternative terms are design dimensions (Hubert Österle) or perspectives (Zachman).

M. Rosemann, A. Schwegmann, and P. Delfmann also see disadvantages in the concept of views: "It is conceivable to create information models for each perspective separately and thus partially redundantly. However, redundancies always mean increased maintenance effort and jeopardize the consistency of the models."[4] (Chapter 3.2.1 Relevant perspectives on process models) ← automatic translation from German

According to Andreas Gadatsch, business process modeling is understood as a part of business process management alongside process definition and process management. (Chapter 1.1 Process management) ← automatic translation from German

Business process modeling is also a central aspect of holistic company mapping - which also deals with the mapping of the corporate mission statement, corporate policy/corporate governance, organizational structure, process organization, application architecture, regulations and interest groups as well as the market.

According to the European Association of Business Process Management EABPM, "there are three different types of end-to-end business processes:

These three process types can be identified in every company and are used in practice almost without exception as the top level for structuring business process models.[5] Instead the term leadership processes the term management processes is typically used. Instead of the term execution processes the term core processes has become widely accepted.[2] (Chapter 6.2.1 Objectives and concept) ← automatic translation from German,[6] (Chapter 1.3 The concept of process) ← automatic translation from German,[7] (Chapter 4.12.2 Differentiation between core and support objectives) ← automatic translation from German,[8] (Chapter 6.2.2 Identification and rough draft) ← automatic translation from German

If the core processes are then organized/decomposed at the next level in supply chain management (SCM), customer relationship management (CRM), and product lifecycle management (PLM), standard models of large organizations and industry associations such as the SCOR model can also be integrated into business process modeling.

History

Techniques to model business processes such as the flow chart, functional flow block diagram, control flow diagram, Gantt chart, PERT diagram, and IDEF have emerged since the beginning of the 20th century. The Gantt charts were among the first to arrive around 1899, the flow charts in the 1920s, functional flow block diagram and PERT in the 1950s, and data-flow diagrams and IDEF in the 1970s. Among the modern methods are Unified Modeling Language and Business Process Model and Notation. Still, these represent just a fraction of the methodologies used over the years to document business processes.[9] The term business process modeling was coined in the 1960s in the field of systems engineering by S. Williams in his 1967 article "Business Process Modelling Improves Administrative Control".[10] His idea was that techniques for obtaining a better understanding of physical control systems could be used in a similar way for business processes. It was not until the 1990s that the term became popular.

In the 1990s the term process became a new productivity paradigm.[11] Companies were encouraged to think in processes instead of functions and procedures. Process thinking looks at the chain of events in the company from purchase to supply, from order retrieval to sales, etc. The traditional modeling tools were developed to illustrate time and cost, while modern tools focus on cross-functional activities. These cross-functional activities have increased significantly in number and importance, due to the growth of complexity and dependence. New methodologies include business process redesign, business process innovation, business process management, integrated business planning, among others, all "aiming at improving processes across the traditional functions that comprise a company".[11]

In the field of software engineering, the term business process modeling opposed the common software process modeling, aiming to focus more on the state of the practice during software development.[12] In that time (the early 1990s) all existing and new modeling techniques to illustrate business processes were consolidated as 'business process modeling languages'. In the Object Oriented approach, it was considered to be an essential step in the specification of business application systems. Business process modeling became the base of new methodologies, for instance, those that supported data collection, data flow analysis, process flow diagrams, and reporting facilities. Around 1995, the first visually oriented tools for business process modeling and implementation were presented.

Objectives of business process modeling

The objective of business process modeling is a - usually graphical - representation of end-to-end processes, whereby complex facts of reality are documented using a uniform (systematized) representation and reduced to the substantial (qualities). Regulatory requirements for the documentation of processes often also play a role here (e.g. document control, traceability, or integrity), for example from quality management, information security management or data protection.

Business process modeling typically begins with determining the environmental requirements: First, the goal of the modeling (applications of business process modeling) must be determined. Business process models are now often used in a multifunctional way (see above). Second the model addressees must be determined, as the properties of the model to be created must meet their requirements. This is followed by the determination of the business processes to be modeled.

The qualities of the business process that are to be represented in the model are specified in accordance with the goal of the modeling. As a rule, these are not only the functions constituting the process, including the relationships between them, but also a number of other qualities, such as formal organization, input, output, resources, information, media, transactions, events, states, conditions, operations and methods.

In detail, the objectives of business process modeling can include (compare: Association of Business Process Management Professionals (ABPMP)[1] (Chapter 3.1.2 Process characteristics and properties) ← automatic translation from German):

Applications of business process modeling

Since business process modeling in itself makes no direct contribution to the financial success of a company, there is no motivation for business process modeling from the most important goal of a company, the intention to make a profit. The motivation of a company to engage in business process modeling therefore always results from the respective purpose. Michael Rosemann, Ansgar Schwegmann und Patrick Delfmann list a number of purposes as motivation for business process modeling:

Business process re-engineering (BPR)

Within an extensive research program initiated in 1984 titled "Management in the 1990s" at MIT, the approach of process re-engineering emerged in the early 1990s. The research program was designed to explore the impact of information technology on the way organizations would be able to survive and thrive in the competitive environment of the 1990s and beyond. In the final report, N. Venkat Venkatraman[15] summarizes the result as follows: The greatest increases in productivity can be achieved when new processes are planned in parallel with information technologies.

This approach was taken up by Thomas H. Davenport[16] (Part I: A Framework For Process Innovation, Chapter: Introduction) as well as Michael M. Hammer and James A. Champy[17] and developed it into business process re-engineering (BPR) as we understand it today, according to which business processes are fundamentally restructured in order to achieve an improvement in measurable performance indicators such as costs, quality, service and time.

Business process re-engineering has been criticized in part for starting from a "green field" and therefore not being directly implementable for established companies. Hermann J. Schmelzer and Wolfgang Sesselmann assess this as follows: "The criticism of BPR has an academic character in many respects. ... Some of the points of criticism raised are justified from a practical perspective. This includes pointing out that an overly radical approach carries the risk of failure. It is particularly problematic if the organization and employees are not adequately prepared for BPR." (Chapter 6.2.1 Objectives and concept) ← automatic translation from German

The high-level approach to BPR according to Thomas H. Davenport consists of:

  1. Identifying Process for Innovation
  2. Identifying Change Levers
  3. Developing Process Visions
  4. Understanding Existing Processes
  5. Designing and Prototyping the New Process

Certification of the management system according to ISO

With ISO/IEC 27001:2022, the standard requirements for management systems are now standardized for all major ISO standards and have a process character.

General standard requirements for management systems with regard to processes

In the ISO/IEC 9001, ISO/IEC 14001, ISO/IEC 27001 standards, this is anchored in Chapter 4.4 in each case:

ISO/IEC 9001:2015Clause 4.4 Quality management system and its processesISO/IEC 14001:2015Clause 4.4. Environmental management systemsISO/IEC 27001:2022Clause 4.4 Information security management system

Each of these standards requires the organization to establish, implement, maintain and continually improve an appropriate management system "including the processes needed and their interactions".[18] , [19] , [20]

In the definition of the standard requirements for the processes needed and their interactions, ISO/IEC 9001 is more specific in clause 4.4.1 than any other ISO standard for management systems and defines that "the organization shall determine and apply the processes needed for"[18] an appropriate management system throughout the organization and also lists detailed requirements with regard to processes:

In addition, clause 4.4.2 of the ISO/IEC 9001 lists some moredetailed requirements with regard to processes:

The implementation of the standard requirements for the processes needed and their interactions and, in particular, proof of the implementation of the standard requirements with adequate documentation (business process modelling) is common practice. This also means that the standard requirements for documented information are also relevant for business process modelling as part of an ISO management system.

Specific standard requirements for management systems with regard to documented information

In the standards ISO/IEC 9001, ISO/IEC 14001, ISO/IEC 27001 the requirements with regard to documented information are anchored in clause 7.5 (detailed in the respective standard in clauses "7.5.1. General", "7.5.2. Creating and updating" and "7.5.3. Control of documented information").

The standard requirements of ISO/IEC 9001 used here as an example include in clause "7.5.1. General"

demand in clause "7.5.2. Creating and updating"

and require in clause "7.5.3. Control of documented information"

Based on the standard requirements,

  1. to determine and continuously improve the required processes and their interactions
  2. to determine and maintain the content of the documented information deemed necessary and
  3. to ensure the secure handling of documented information (protection, access, monitoring, and maintenance)

preparing for ISO certification of a management system is a very good opportunity to establish or promote business process modelling in the organisation.

Business process optimization

Hermann J. Schmelzer and Wolfgang Sesselmann point out that the field of improvement of the three methods mentioned by them as examples for process optimization (control and reduction of total cycle time (TCT), Kaizen and Six Sigma) are processes: In the case of total cycle time (TCT), it is the business processes (end-to-end processes) and sub-processes, with Kaizen it is the process steps and activity and with Six Sigma it is the sub-processes, process steps and activity.[2] (Chapter 6.3.1 Total Cycle Time (TCT), KAIZEN and Six Sigma in comparison) ← automatic translation from German

For the total cycle time (TCT), Hermann J. Schmelzer and Wolfgang Sesselmann list the following key features:[2] (Chapter 6.3.2 Total Cycle Time (TCT)) ← automatic translation from German

Consequently, business process modeling for TCT must support adequate documentation of barriers, barrier handling, and measurement.

When examining Kaizen tools, initially, there is no direct connection to business processes or business process modeling. However, Kaizen and business process management can mutually enhance each other. In the realm of business process management, Kaizen's objectives are directly derived from the objectives for business processes and sub-processes. This linkage ensures that Kaizen measures effectively support the overarching business objectives." (Chapter 6.3.3 KAIZEN) ← automatic translation from German

Six Sigma is designed to prevent errors and improve the process capability so that the proportion of process outcomes that meet the requirements is 6σ - or in other words, for every million process outcomes, only 3.4 errors occur. Hermann J. Schmelzer and Wolfgang Sesselmann explain: "Companies often encounter considerable resistance at a level of 4σ, which makes it necessary to redesign business processes in the sense of business process re-engineering (design for Six Sigma)." (Chapter 6.3.4 Six Sigma) ← automatic translation from German For a reproducible measurement of process capability, precise knowledge of the business processes is required and business process modeling is a suitable tool for design for Six Sigma. Six Sigma therefore uses business process modeling according to SIPOC as an essential part of the methodology and business process modeling using SIPOC has established itself as a standard tool for Six Sigma.

Inter-company business process modeling

The aim of inter-company business process modeling is to include the influences of external stakeholders in the analysis or to achieve inter-company comparability of business processes, e.g. to enable benchmarking.

Martin Kugler lists the following requirements for business process modeling in this context:[21] (Chapter 14.2.1 Requirements for inter-company business process modeling) ← automatic translation from German

Topics

Analysis of business activities

Define framework conditions

The analysis of business activities determines and defines the framework conditions for successful business process modeling. This is where the company should start,

develop an approach for structuring the business process models. Both the relevant purposes and the strategy directly influence the process map.

This strategy for the long-term success of business process modeling can be characterized by the market-oriented view and/or the resource-based view. Jörg Becker and Volker Meise explain: "Whereas in the market view, the industry and the behavior of competitors directly determine a company's strategy, the resource-oriented approach takes an internal view by analyzing the strengths and weaknesses of the company and deriving the direction of development of the strategy from this."[7] (Chapter 4.6 The resource-based view) ← automatic translation from German And further: "The alternative character initially formulated in the literature between the market-based and resource-based view has now given way to a differentiated perspective. The core competence approach is seen as an important contribution to the explanation of success potential, which is used alongside the existing, market-oriented approaches."[7] (Chapter 4.7 Combination of views) ← automatic translation from German Depending on the company's strategy, the process map will therefore be the business process models with a view to market development, with a view to resource optimization or in a balanced manner.

Identify business processes

Following the identification phase, a company's business processes are distinguished from one another through an analysis of their respective business activities (refer also to business process analysis). A business process constitutes a set of interconnected, organized actions (activities) geared towards delivering a specific service or product (to fulfill a specific goal) for a particular customer or customer group.

According to the European Association of Business Process Management (EABPM), establishing a common understanding of the current process and its alignment with the objectives serves as an initial step in process design or reengineering." (Chapter 4 Process analysis) ← automatic translation from German

The effort involved in analysing the as-is processes is repeatedly criticised in the literature, especially by proponents of business process re-engineering (BPR), and it is suggested that the definition of the target state should begin immediately.

Hermann J. Schmelzer and Wolfgang Sesselmann, on the other hand, discuss and evaluate the criticism levelled at the radical approach of business process re-engineering (BPR) in the literature and "recommend carrying out as-is analyses. A reorganisation must know the current weak points in order to be able to eliminate them. The results of the analyses also provide arguments as to why a process re-engineering is necessary. It is also important to know the initial situation for the transition from the current to the target state. However, the analysis effort should be kept within narrow limits. The results of the analyses should also not influence the redesign too strongly."[2] (Chapter 6.2.2 Critical assessment of the BPR) ← automatic translation from German

Structure business processes - building a process map

Timo Füermann explains: "Once the business processes have been identified and named, they are now compiled in an overview. Such overviews are referred to as process maps."[22] (Chapter 2.4 Creating the process map) ← automatic translation from German

Jörg Becker and Volker Meise provide the following list of activities for structuring business processes:

The structuring of business processes generally begins with a distinction between management, core, and support processes.

Structure core processes based on the strategy for the long-term success of business process modeling

As the core business processes clearly make up the majority of a company's identified business processes, it has become common practice to subdivide the core processes once again. There are different approaches to this depending on the type of company and business activity. These approaches are significantly influenced by the defined application of business process modeling and the strategy for the long-term success of business process modeling.

In the case of a primarily market-based strategy, end-to-end core business processes are often defined from the customer or supplier to the retailer or customer (e.g. "From offer to order", "From order to invoice", "From order to delivery", "From idea to product", etc.). In the case of a strategy based on resources, the core business processes are often defined on the basis of the central corporate functions ("Gaining orders", "Procuring and providing materials", "Developing products", "Providing services", etc.).

In a differentiated view without a clear focus on the market view or the resource view, the core business processes are typically divided into CRM, PLM and SCM.

However, other approaches to structuring core business processes are also common, for example from the perspective of customers, products or sales channels.

The result of structuring a company's business processes is the process map (shown, for example, as a value chain diagram). Hermann J. Schmelzer and Wolfgang Sesselmann add: "There are connections and dependencies between the business processes. They are based on the transfer of services and information. It is important to know these interrelationships in order to understand, manage, and control the business processes." (Chapter 2.4.3 Process map) ← automatic translation from German

Definition of business processes

The definition of business processes often begins with the company's core processes because they

for the company

The scope of a business process should be selected in such a way that it contains a manageable number of sub-processes, while at the same time keeping the total number of business processes within reasonable limits. Five to eight business processes per business unit usually cover the performance range of a company.

Each business process should be independent - but the processes are interlinked.

The definition of a business process includes: What result should be achieved on completion? What activities are necessary to achieve this? Which objects should be processed (orders, raw materials, purchases, products, ...)? Define start and end point. Definition of operational goals.

Depending on the prevailing corporate culture, which may either be more inclined towards embracing change or protective of the status quo and the effectiveness of communication, defining business processes can prove to be either straightforward or challenging. This hinges on the willingness of key stakeholders within the organization, such as department heads, to lend their support to the endeavor. Within this context, effective communication plays a pivotal role.

In elucidating this point, Jörg Becker and Volker Meise elucidate that the communication strategy within an organizational design initiative should aim to garner support from members of the organization for the intended structural changes. It is worth noting that business process modeling typically precedes business process optimization, which entails a reconfiguration of process organization - a fact well understood by the involved parties. Therefore, the communication strategy must focus on persuading organizational members to endorse the planned structural adjustments." (Chapter 4.15 Influencing the design of the regulatory framework) ← automatic translation from German In the event of considerable resistance, however, external knowledge can also be used to define the business processes.

General process identification and individual process identification

Jörg Becker and Volker Meise mention two approaches (general process identification and individual process identification) and state the following about general process identification: "In the general process definition, it is assumed that basic, generally valid processes exist that are the same in all companies." It goes on to say: "Detailed reference models can also be used for general process identification. They describe industry- or application system-specific processes of an organization that still need to be adapted to the individual case, but are already coordinated in their structure."[7] (Chapter 4.11 General process identification) ← automatic translation from German

Jörg Becker and Volker Meise state the following about individual process identification: "In individual or singular process identification, it is assumed that the processes in each company are different according to customer needs and the competitive situation and can be identified inductively based on the individual problem situation."[7] (Chapter 4.12 Individual process identification) ← automatic translation from German

The result of the definition of the business processes is usually a rough structure of the business processes as a value chain diagram.

Further structuring of business processes

The rough structure of the business processes created so far will now be decomposed - by breaking it down into sub-processes that have their own attributes but also contribute to achieving the goal of the business process. This decomposition should be significantly influenced by the application and strategy for the long-term success of business process modeling and should be continued as long as the tailoring of the sub-processes defined this way contributes to the implementation of the purpose and strategy.

A sub-process created in this way uses a model to describe the way in which procedures are carried out in order to achieve the intended operating goals of the company. The model is an abstraction of reality (or a target state) and its concrete form depends on the intended use (application).

A further decomposition of the sub-processes can then take place during business process modeling if necessary. If the business process can be represented as a sequence of phases, separated by milestones, the decomposition into phases is common. Where possible, the transfer of milestones to the next level of decomposition contributes to general understanding.

The result of the further structuring of business processes is usually a hierarchy of sub-processes, represented in value chain diagrams. It is common that not all business processes have the same depth of decomposition. In particular, business processes that are not safety-relevant, cost-intensive or contribute to the operating goal are broken down to a much lesser depth. Similarly, as a preliminary stage of a decomposition of a process planned for (much) later, a common understanding can first be developed using simpler / less complex means than value chain diagrams - e.g. with a textual description or with a turtle diagram (Chapter 3.1 Defining process details) ← automatic translation from German (not to be confused with turtle graphic!).

Assigning the process responsibility

Complete, self-contained processes are summarized and handed over to a responsible person or team. The process owner is responsible for success, creates the framework conditions and coordinates his or her approach with that of the other process owners. Furthermore, he/she is responsible for the exchange of information between the business processes. This coordination is necessary in order to achieve the overall goal orientation.

Modeling business process

Design of the process chains

If business processes are documented using a specific IT-system and representation, e.g. graphically, this is generally referred to as modeling. The result of the documentation is the business process model.

As is modeling and to be modeling

The question of whether the business process model should be created through as is modeling or to be modeling is significantly influenced by the defined application and the strategy for the long-term success of business process modeling. The previous procedure with analysis of business activities, defineition of business processes and further structuring of business processes is advisable in any case.

As-is modeling

Ansgar Schwegmann and Michael Laske explain: "Determining the current status is the basis for identifying weaknesses and localizing potential for improvement. For example, weak points such as organizational breaks or insufficient IT penetration can be identified."[23] (Chapter 5.1 Intention of the as is modeling) ← automatic translation from German

The following disadvantages speak against as is modeling:

These arguments weigh particularly heavily if Business process re-engineering (BPR) is planned anyway.

Ansgar Schwegmann and Michael Laske also list a number of advantages of as is modeling: (Chapter 5.1 Intention of as-is modeling) ← automatic translation from German

Other advantages can also be found, such as

To be modeling

Mario Speck and Norbert Schnetgöke define the objective of to be modeling as follows: "The target processes are based on the strategic goals of the company. This means that all sub-processes and individual activities of a company must be analyzed with regard to their target contribution. Sub-processes or activities that cannot be identified as value-adding and do not serve at least one non-monetary corporate objective must therefore be eliminated from the business processes." (Chapter 6.2.3 Capturing and documenting to be models)

They also list five basic principles that have proven their worth in the creation of to be models:

The business process model created by as is modeling or to be modeling consists of:

Sub-processes

Delimitation

August W. Scheer is said to have said in his lectures: A process is a process is a process. This is intended to express the recursiveness of the term because almost every process can be broken down into smaller processes (sub-processes). In this respect, terms such as business process, main process, sub-process or elementary process are only a desperate attempt to name the level of process decomposition. As there is no universally valid agreement on the granularity of a business process, main process, sub-process or elementary process, the terms are not universally defined, but can only be understood in the context of the respective business process model.

In addition, some German-speaking schools of business informatics do not use the terms process (in the sense of representing the sequence of actions (activities)) and function (in the sense of a delimited corporate function/action (activity) area that is clearly assigned to a corporate function owner).

For example, in August W. Scheer's ARIS it is possible to use functions from the function view as processes in the control view and vice versa. Although this has the advantage that already defined processes or functions can be reused across the board, it also means that the proper purpose of the function view is diluted and the ARIS user is no longer able to separate processes and functions from one another.

The first image shows as a value chain diagram how the business process Edit sales pipeline has been broken down into sub-processes (in the sense of representing the sequence of actions (activities)) based on its phases.

The second image shows an excerpt of typical functions (in the sense of delimited corporate function/action (activity) areas, which are assigned to a corporate function owner), which are structured based on the areas of competence and responsibility hierarchy. The corporate functions that support the business process Edit sales pipeline are marked in the function tree.

Utilization

A business process can be decomposed into sub-processes until further decomposition is no longer meaningful/possible (smallest meaningful sub-process = elementary process). Usually, all levels of decomposition of a business process are documented in the same methodology: Process symbols. The process symbols used when modeling one level of decomposition then usually refer to the sub-processes of the next level until the level of elementary processes is reached. Value chain diagrams are often used to represent business processes, main processes, sub-processes and elementary processes.

Workflow

A workflow is a representation of a sequence of tasks, declared as work of a person, of a simple or complex mechanism, of a group of persons,[24] of an organization of staff, or of machines (including IT-systems). A workflow is therefore always located at the elementary process level. The workflow may be seen as any abstraction of real work, segregated into workshare, work split, or other types of ordering. For control purposes, the workflow may be a view of real work under a chosen aspect.

Functions (Tasks)

Delimitation

The term functions is often used synonymously for a delimited corporate function/action (activita) area, which is assigned to a corporate function owner, and the atomic activity (task) at the level of the elementary processes. In order to avoid the double meaning of the term function, the term task can be used for the atomic activities at the level of the elementary processes in accordance with the naming in BPMN. Modern tools also offer the automatic conversion of a task into a process, so that it is possible to create a further level of process decomposition at any time, in which a task must then be upgraded to an elementary process.

Utilization

The graphical elements used at the level of elementary processes then describe the (temporal-logical) sequence with the help of functions (tasks). The sequence of the functions (tasks) within the elementary processes is determined by their logical linking with each other (by logical operators or Gateways), provided it is not already specified by input/output relationships or Milestones. It is common to use additional graphical elements to illustrate interfaces, states (events), conditions (rules), milestones, etc. in order to better clarify the process. Depending on the modeling tool used, very different graphical representation (models) are used.

Furthermore, the functions (tasks) can be supplemented with graphical elements to describe inputs, outputs, systems, roles, etc. with the aim of improving the accuracy of the description and/or increasing the number of details. However, these additions quickly make the model confusing. To resolve the contradiction between accuracy of description and clarity, there are two main solutions: Outsourcing the additional graphical elements for describing inputs, outputs, systems, roles, etc. to a Function Allocation Diagram (FAD) or selectively showing/hiding these elements depending on the question/application.

The function allocation diagram shown in the image illustrates the addition of graphical elements for the description of inputs, outputs, systems, roles, etc. to functions (tasks) very well.

Master data (artifacts)

The term master data is neither defined by The Open Group (The Open Group Architecture Framework, TOGAF) or John A. Zachman (Zachman Framework) nor any of the five relevant German-speaking schools of business informatics: 1) August W. Scheer, 2) Hubert Österle, 3) Otto K. Ferstl and Elmar J. Sinz, 4) Hermann Gehring and 5) Andreas Gadatsch and is commonly used in the absence of a suitable term in the literature. It is based on the general term for data that represents basic information about operationally relevant objects and refers to basic information that is not primary information of the business process.

For August W. Scheer in ARIS, this would be the basic information of the organization view, data view, function view and performance view.[25] (Chapter 1 The vision: A common language for IT and management) ← automatic translation from German

For Andreas Gadatsch in GPM (Ganzheitliche Prozessmodellierung (German), means holistic process modelling), this would be the basic information of the organizational structure view, activity structure view, data structure view, and application structure view.[3] (Chapter 3.2 GPM - Holistic process modelling) ← automatic translation from German

For Otto K. Ferstl and Elmar J. Sinz in SOM (Semantic Objektmodell), this would be the basic information of the levels Business plan and Resourcen.

Master data can be, for example:

By adding master data to the business process modeling, the same business process model can be used for different application and a return on investment for the business process modeling can be achieved more quickly with the resulting synergy.

Depending on how much value is given to master data in business process modeling, it is still possible to embed the master data in the process model without negatively affecting the readability of the model or the master data should be outsourced to a separate view, e.g. Function Allocation Diagrams.

If master data is systematically added to the business process model, this is referred to as an artifact-centric business process model.

Artifact-centric business process

The artifact-centric business process model has emerged as a holistic approach for modeling business processes, as it provides a highly flexible solution to capture operational specifications of business processes. It particularly focuses on describing the data of business processes, known as "artifacts", by characterizing business-relevant data objects, their life-cycles, and related services. The artifact-centric process modelling approach fosters the automation of the business operations and supports the flexibility of the workflow enactment and evolution.[26]

Integration of external documents and IT-systems

The integration of external documents and IT-systems can significantly increase the added value of a business process model.

For example, direct access to objects in a knowledge database or documents in a rule framework can significantly increase the benefits of the business process model in everyday life and thus the acceptance of business process modeling. All IT-systems involved can exploit their specific advantages and cross-fertilize each other (e.g. link to each other or standardize the filing structure):

If all relevant objects of the knowledge database and / or documents of the rule framework are connected to the processes, the end users have context-related access to this information and do not need to be familiar with the respective filing structure of the connected systems.

The direct connection of external systems can also be used to integrate current measurement results or system statuses into the processes (and, for example, to display the current operating status of the processes), to display widgets and show output from external systems or to jump to external systems and initiate a transaction there with a preconfigured dialog.

Further connections to external systems can be used, for example, for electronic data interchange (EDI).

Model consolidation

This is about checking whether there are any redundancies. If so, the relevant sub-processes are combined. Or sub-processes that are used more than once are outsourced to support processes. For a successful model consolidation, it may be necessary to revise the original decomposition of the sub-processes.

Ansgar Schwegmann and Michael Laske explain: "A consolidation of the models of different modeling complexes is necessary in order to obtain an integrated ... model." (Chapter 5.2.4 Model consolidation) ← automatic translation from German They also list a number of aspects for which model consolidation is important:

Process chaining and control flow patterns

The chaining of the sub-processes with each other and the chaining of the functions (tasks) in the sub-processes is modeled using Control Flow Patterns.

Material details of the chaining (What does the predecessor deliver to the successor?) are specified in the process interfaces if intended.

Process interfaces

Process interfaces are defined in order to

As a rule, this what and its structure is determined by the requirements in the subsequent process.

Process interfaces represent the exit from the current business process/sub-process and the entry into the subsequent business process/sub-process.

Process interfaces are therefore description elements for linking processes section by section. A process interface can

Process interfaces are agreed between the participants of superordinate/subordinate or neighboring business process models. They are defined and linked once and used as often as required in process models.

Interfaces can be defined by:

In real terms, the transferred inputs/outputs are often data or information, but any other business objects are also conceivable (material, products in their final or semi-finished state, documents such as a delivery bill). They are provided via suitable transport media (e.g. data storage in the case of data).

Business process management

See article Business process management.

In order to put improved business processes into practice, change management programs are usually required. With advances in software design, the vision of BPM models being fully executable (enabling simulations and round-trip engineering) is getting closer to reality.

Adaptation of process models

In business process management, process flows are regularly reviewed and optimized (adapted) if necessary. Regardless of whether this adaptation of process flows is triggered by continuous process improvement or by process reorganization (business process re-engineering), it entails an update of individual sub-processes or an entire business process.

Representation type and notation

In practice, combinations of informal, semiformal and formal models are common: informal textual descriptions for explanation, semiformal graphical representation for visualization, and formal language representation to support simulation and transfer into executable code.

Modelling techniques

There are various standards for notations; the most common are:

Furthermore:

In addition, representation types from software architecture can also be used:

Business Process Execution Language (BPEL)

Tools

Business process modelling tools provide business users with the ability to model their business processes, implement and execute those models, and refine the models based on as-executed data. As a result, business process modelling tools can provide transparency into business processes, as well as the centralization of corporate business process models and execution metrics.[30] Modelling tools may also enable collaborate modelling of complex processes by users working in teams, where users can share and simulate models collaboratively.[31] Business process modelling tools should not be confused with business process automation systems - both practices have modeling the process as the same initial step and the difference is that process automation gives you an 'executable diagram' and that is drastically different from traditional graphical business process modelling tools.

Programming language tools

BPM suite software provides programming interfaces (web services, application program interfaces (APIs)) which allow enterprise applications to be built to leverage the BPM engine.[30] This component is often referenced as the engine of the BPM suite.

Programming languages that are being introduced for BPM include:[32]

Some vendor-specific languages:

Other technologies related to business process modelling include model-driven architecture and service-oriented architecture.

Simulation

The simulation functionality of such tools allows for pre-execution "what-if" modelling (which has particular requirements for this application) and simulation. Post-execution optimization is available based on the analysis of actual as-performed metrics.

Related concepts

Business reference model

A business reference model is a reference model, concentrating on the functional and organizational aspects of an enterprise, service organization, or government agency. In general, a reference model is a model of something that embodies the basic goal or idea of something and can then be looked at as a reference for various purposes. A business reference model is a means to describe the business operations of an organization, independent of the organizational structure that performs them. Other types of business reference models can also depict the relationship between the business processes, business functions, and the business area's business reference model. These reference models can be constructed in layers, and offer a foundation for the analysis of service components, technology, data, and performance.

The most familiar business reference model is the Business Reference Model of the US federal government. That model is a function-driven framework for describing the business operations of the federal government independent of the agencies that perform them. The Business Reference Model provides an organized, hierarchical construct for describing the day-to-day business operations of the federal government. While many models exist for describing organizations – organizational charts, location maps, etc. – this model presents the business using a functionally driven approach.[33]

Business process integration

A business model, which may be considered an elaboration of a business process model, typically shows business data and business organizations as well as business processes. By showing business processes and their information flows, a business model allows business stakeholders to define, understand, and validate their business enterprise. The data model part of the business model shows how business information is stored, which is useful for developing software code. See the figure on the right for an example of the interaction between business process models and data models.[34]

Usually, a business model is created after conducting an interview, which is part of the business analysis process. The interview consists of a facilitator asking a series of questions to extract information about the subject business process. The interviewer is referred to as a facilitator to emphasize that it is the participants, not the facilitator, who provide the business process information. Although the facilitator should have some knowledge of the subject business process, but this is not as important as the mastery of a pragmatic and rigorous method interviewing business experts. The method is important because for most enterprises a team of facilitators is needed to collect information across the enterprise, and the findings of all the interviewers must be compiled and integrated once completed.[34]

Business models are developed as defining either the current state of the process, in which case the final product is called the "as is" snapshot model, or a concept of what the process should become, resulting in a "to be" model. By comparing and contrasting "as is" and "to be" models the business analysts can determine if the existing business processes and information systems are sound and only need minor modifications, or if reengineering is required to correct problems or improve efficiency. Consequently, business process modeling and subsequent analysis can be used to fundamentally reshape the way an enterprise conducts its operations.[34]

Business process re-engineering

Business process reengineering (BPR) aims to improve the efficiency and effectiveness of the processes that exist within and across organizations. It examines business processes from a "clean slate" perspective to determine how best to construct them.

Business process re-engineering (BPR) began as a private sector technique to help organizations fundamentally rethink how they do their work. A key stimulus for re-engineering has been the development and deployment of sophisticated information systems and networks. Leading organizations use this technology to support innovative business processes, rather than refining current ways of doing work.[35]

Business process management

Change management programs are typically involved to put any improved business processes into practice. With advances in software design, the vision of BPM models becoming fully executable (and capable of simulations and round-trip engineering) is coming closer to reality.

Adaptation of process models

In business process management, process flows are regularly reviewed and, if necessary, optimized (adapted). Regardless of whether this adaptation of process flows is triggered by continual improvement process or business process re-engineering, it entails updating individual sub-processes or an entire business process.

See also

Further reading

Notes and References

  1. Association of Business Process Management Professionals ABPMP (publisher): Guide to the Business Process Management common body of knowledge - BPM CBOK® in the translated and edited German edition of → European Association of Business Process Management EABPM (publisher): Business Process Management Common Body of Knowledge - BPM CBOK®, 2nd version, Verlag Dr. Götz Schmidt, Gießen 2009, ISBN 978-3-921313-80-0
  2. Hermann J. Schmelzer and Wolfgang Sesselmann: Geschäftsprozessmanagement in der Praxis, 9th edition, Hanser, Munich 2020, ISBN 978-3-446-44625-0
  3. Andreas Gadatsch: Management von Geschäftsprozessen / Methoden und Werkzeuge für die IT-Praxis: Eine Einführung für Studenten und Praktiker, 2nd revised and expanded edition, Vieweg, Braunschweig/Wiesbaden 2002, ISBN 978-3-528-15759-3
  4. Michael Rosemann, Ansgar Schwegmann and Patrick Delfmann: Vorbereitung der Prozessmodellierung in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 978-3-540-00107-2
  5. Knowledge database: In 6 einfachen Schritten zur Prozesslandkarte, DER PROZESSMANAGER GmbH (last accessed: January 25, 2024)
  6. Jörg Becker and Dieter Kahn: Der Prozess im Fokus in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  7. Jörg Becker and Volker Meise: Strategie und Organisationsrahmen in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  8. Mario Speck and Norbert Schnetgöke: Sollmodellierung und Prozessoptimierung in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  9. Thomas Dufresne & James Martin (2003). "Process Modeling for E-Business". INFS 770 Methods for Information Systems Engineering: Knowledge Management and E-Business. Spring 2003
  10. Williams, S. (1967) "Business Process Modeling Improves Administrative Control," In: Automation. December 1967, pp. 44 - 50.
  11. Asbjørn Rolstadås (1995). "Business process modeling and re-engineering". in: Performance Management: A Business Process Benchmarking Approach. p. 148-150.
  12. Brian C. Warboys (1994). Software Process Technology: Third European Workshop EWSPT'94, Villard de Lans, France, February 7–9, 1994: Proceedings. p. 252.
  13. John Miltenburg, David Sparling: Managing and reducing total cycle time: models and analysis in Elsevier International Journal of Production Economics, December 1996, Pages 89-108
  14. Michael Molter: Die Prozessorientierte Applikationslandschaft in August-W. Scheer, Wolfram Jost and Karl Wagner (publisher): Von Prozessmodellen zu lauffähigen Anwendungen, Springer Berlin, Heidelberg, New York 2005, ISBN 3-540-23457-8
  15. N. Venkat Venkatraman: IT-Induced Business Reconfiguration in M. S. Scott Morton (publisher): The Corporation of the 1990s: Information Technology and Organizational Transformation, 1st edition, Oxford University Press 1991, ISBN 978-0-19-506358-5
  16. [Thomas H. Davenport]
  17. [Michael Martin Hammer|Michael M. Hammer]
  18. ISO 9001:2015: Quality management systems - Requirements, Fifth edition 2015-09, ISO, the International Organization for Standardization 2015.
  19. ISO 14001:2015: Environmental management systems - Requirements with guidance for use, Third edition 2015-09, ISO, the International Organization for Standardization 2015.
  20. ISO 27001:2022: Information security, cybersecurity and privacy protection Information security management systems - Requirements, Third edition 2022-10, ISO, the International Organization for Standardization 2022.
  21. Martin Kugler: Supply Chain Management und Customer Relationship Management - Prozessmodellierung für Extended Enterprises in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2. corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  22. Timo Füermann: Prozessmanagement: Kompaktes Wissen, Konkrete Umsetzung, Praktische Arbeitshilfen, Hanser, München 2014, ISBN 978-3-446-43858-3
  23. Ansgar Schwegmann and Michael Laske: Istmodellierung und Istanalyse in Jörg Becker, Martin Kugler and Michael Rosemamm (publisher): Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 2nd corrected and expanded edition, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-00107-7
  24. Web site: ISO - International Organization for Standardization. ISO. 27 May 2024 .
  25. August-W. Scheer: ARIS: Von der Vision zur praktischen Geschäftsprozesssteuerung in August-W. Scheer and Wolfram Jost (Hrsg.): ARIS in der Praxis: Gestaltung, Implementierung und Optimierung von Geschäftsprozessen, Springer, Berlin/Heidelberg/New York 2002, ISBN 3-540-43029-6
  26. Yongchareon. Sira. A View Framework for Modelling and Change Validation of Artifact-Centric Inter-Organizational Business Processes. Information Systems. 2015. 47. 51–81. 10.1016/j.is.2014.07.004.
  27. Cedric G. Tyler and Stephen R. Baker: Business Genetics: Understanding 21st Century Corporations using xBML, John Wiley & Sons Ltd, 2007, ISBN 978-0-470-06654-6
  28. Web site: Archived copy . 2024-02-19 . 2014-01-09 . https://web.archive.org/web/20140109032735/http://www.xbmlinnovations.com/Home.aspx . bot: unknown. accessed February 19, 2024.
  29. , auf prof-mayr.de, retrieved 5 February 2024; PDF "VL4030_OMEGA+-Beschreibungsmethode.pdf" nicht mehr verfügbar
  30. http://enterprisearchitecture.nih.gov/ArchLib/AT/TA/WorkflowServicePattern.htm Workflow/Business Process Management (BPM) Service Pattern
  31. Christensen, Lars Rune & Thomas Hildebrandt (2017) Modelling Cooperative Work at a Medical Department. Proceedings of the 8th International Conference on Communities and Technologies. Troyes, France. ACM.
  32. Web site: Business Process Modelling FAQ . 2008-11-02 . dead . https://web.archive.org/web/20081109082206/http://www.bpmodeling.com/faq/ . 2008-11-09.
  33. https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/fea_docs/FEA_CRM_v23_Final_Oct_2007_Revised.pdf FEA Consolidated Reference Model Document
  34. Paul R. Smith & Richard Sarfaty (1993). Creating a strategic plan for configuration management using Computer Aided Software Engineering (CASE) tools. Paper For 1993 National DOE/Contractors and Facilities CAD/CAE User's Group.
  35. https://govinfo.library.unt.edu/npr/library/gao/bprag.pdf Business Process Reengineering Assessment Guide