Bueno-Orovio–Cherry–Fenton model explained

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells.[1] It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.[2] [3]

This mathematical model reproduces both single cell and important tissue-level properties, accounting for physiological action potential development and conduction velocity estimations.[1] It also provides specific parameters choices, derived from parameter-fitting algorithms of the MATLAB Optimization Toolbox, for the modeling of epicardial, endocardial and myd-myocardial tissues. In this way it is possible to match the action potential morphologies, observed from experimental data, in the three different regions of the human ventricles.The Bueno-Orovio–Cherry–Fenton model is also able to describe reentrant and spiral wave dynamics, which occurs for instance during tachycardia or other types of arrhythmias.

From the mathematical perspective, it consists of a system of four differential equations. One PDE, similar to the monodomain model, for an adimensional version of the transmembrane potential, and three ODEs that define the evolution of the so-called gating variables, i.e. probability density functions whose aim is to model the fraction of open ion channels across a cell membrane.[4]

Mathematical modeling

The system of four differential equations reads as follows:

\begin{cases} \dfrac{\partialu}{\partialt}=\nabla(D\nablau)-(Jfi+Jso+Jsi)&in\Omega x (0,T)\\[5pt] \dfrac{\partialv}{\partialt}=\dfrac{(1-H(u-\thetav))(vinfty-

-}
v)}{\tau
v

-\dfrac{H(u-\thetav)

+}
v}{\tau
v

&in\Omega x (0,T)\\[5pt] \dfrac{\partialw}{\partialt}=\dfrac{(1-H(u-\thetaw))(winfty-

-}
w)}{\tau
w

-\dfrac{H(u-\thetaw)

+}
w}{\tau
w

&in\Omega x (0,T)\\[5pt] \dfrac{\partials}{\partialt}=\dfrac{1}{\taus}\left(\dfrac{1+\tanh(ks(u-us))}{2}-s\right)&in\Omega x (0,T)\\[5pt] (D\nablau)\boldsymbol{N}=0&on\partial\Omega x (0,T)\\[5pt] u=u0,v=v0,w=w0,s=s0&in\Omega x \{0\}\end{cases}

where

\Omega

is the spatial domain and

T

is the final time. The initial conditions are

u0=0

,

v0=1

,

w0=1

,

s0=0

.

H(x-x0)

refers to the Heaviside function centered in

x0

. The adimensional transmembrane potential

u

can be rescaled in mV by means of the affine transformation

VmV=85.7u-84

.

v

,

w

and

s

refer to gating variables, where in particular

s

can be also used as an indication of intracellular calcium
2+
{{Ca}
i}
concentration (given in the adimensional range [0, 1] instead of molar concentration).[5]

Jfi,Jso

and

Jsi

are the fast inward, slow outward and slow inward currents respectively, given by the following expressions:

Jfi=-

vH(u-\thetav)(u-\thetav)(uu-u)
\taufi

,

Jso=

(u-uo)(1-H(u-\thetaw))
\tauo

+

H(u-\thetaw)
\tauso

,

Jsi=-

H(u-\thetaw)ws
\tausi

,

All the above-mentioned ionic density currents are partially adimensional and are expressed in

\dfrac{1}{seconds

}.

Different parameters sets, as shown in Table 1, can be used to reproduce the action potential development of epicardial, endocardial and mid-myocardial human ventricular cells. There are some constants of the model, which are not located in Table 1, that can be deduced with the following formulas:

-
\tau
v

=(1-H(u-

-))
\theta
v
-
\tau
v1

+H(u-

-)
\theta
v
-,
\tau
v2
-
\tau
w

=

-
\tau
w1

+

-
(\tau
w2

-

-)(1
\tau
w1

+

-(u
\tanh(k
w

-

-)))/2,
u
w

\tauso=\tau{so1}+(\tau{so2}-\tau{so1})(1+\tanh(kso(u-uso)))/2,

\taus=(1-H(u-\thetaw))

\tau
s1

+H(u-\thetaw)

\tau
s2

,

\tauo=(1-H(u-\thetao))

\tau
o1

+H(u-\thetao)

\tau
o2

,

vinfty=1-H(u-

-),
\theta
v

winfty=(1-H(u-\thetao))(1-

u/\tau
winfty

)+H(u-\thetao)

*.
w
infty

where the temporal constants, i.e.

-,
\tau
v
-,
\tau
w

\tauso,\taus,\tauo

are expressed in seconds, whereas

vinfty

and

winfty

are adimensional.

The diffusion coefficient

D

results in a value of

1.171\pm0.221\dfrac{cm2}{seconds

}, which comes from experimental tests on human ventricular tissues.

In order to trigger the action potential development in a certain position of the domain

\Omega

, a forcing term

Japp(\boldsymbolx,t)

, which represents an externally applied density current, is usually added at the right hand side of the PDE and acts for a short time interval only.
Table 1: values of the parameters for different positions of the human heart
Parameter

uo

uu

\thetav

\thetaw

-
\theta
v

\thetao

-
\tau
v1
-
\tau
v2
+
\tau
v
-
\tau
w1
-
\tau
w2
-
k
w
-
u
w
+
\tau
w

\taufi

\tau
o1
\tau
o2

\tau{so1}

\tau{so2}

kso

uso

\tau
s1
\tau
s2

ks

us

\tausi

\tau
winfty
*
w
infty
Unity of measure- - - - - - seconds seconds seconds seconds seconds - - seconds seconds seconds seconds seconds seconds - - seconds seconds - - seconds - -
Epicardium0 1.55 0.3 0.13 0.006 0.006 60e-3 1150e-3 1.4506e-3 60e-3 15e-3 65 0.03 200e-3 0.11e-3 400e-3 6e-3 30.0181e-3 0.9957e-3 2.0458 0.65 2.7342e-3 16e-3 2.0994 0.9087 1.8875e-3 0.07 0.94
Endocardium0 1.56 0.3 0.13 0.2 0.006 75e-3 10e-3 1.4506e-3 6e-3 140e-3 200 0.016 280e-3 0.1e-3 470e-3 6e-3 40e-3 1.2e-3 2 0.65 2.7342e-3 2e-3 2.0994 0.9087 2.9013e-3 0.0273 0.78
Myocardium0 1.61 0.3 0.13 0.1 0.005 80e-3 1.4506e-3 1.4506e-3 70e-3 8e-3 200 0.016 280e-3 0.078e-3 410e-3 7e-3 91e-3 0.8e-3 2.1 0.6 2.7342e-3 4e-3 2.0994 0.9087 3.3849e-3 0.01 0.5

Weak formulation

Assume that

\boldsymbol{z}

refers to the vector containing all the gating variables, i.e.

\boldsymbol{z}=[v,w,s]T

, and

\boldsymbol{F}:R4R3

contains the corresponding three right hand sides of the ionic model. The Bueno-Orovio–Cherry–Fenton model can be rewritten in the compact form:[6]

\begin{cases} \dfrac{\partialu}{\partialt}-\nabla(D\nablau)+(Jfi+Jso+Jsi)=0&in\Omega x (0,T)\\[5pt] \dfrac{\partial\boldsymbol{z}}{\partialt}=\boldsymbol{F}(u,\boldsymbol{z})&in\Omega x (0,T)\\ \end{cases}

Let

p\inU=H1(\Omega)

and

\boldsymbol{q}\in\boldsymbol{W}=[L2(\Omega)]3

be two generic test functions.

To obtain the weak formulation:

p\inU

the first equation of the model and by

\boldsymbol{q}\in\boldsymbol{W}

the equations for the evolution of the gating variables. Integrating both members of all the equations in the domain

\Omega

:

\begin{cases} \displaystyle\int\Omega\dfrac{du(t)}{dt}pd\Omega-\int\Omega\nabla(D\nablau(t))pd\Omega+\int\Omega(Jfi+Jso+Jsi)pd\Omega=0&\forallp\inU\\[5pt] \displaystyle\int\Omega\dfrac{d\boldsymbol{z}(t)}{dt}\boldsymbol{q}d\Omega=\int\Omega\boldsymbol{F}(u(t),\boldsymbol{z}(t))\boldsymbol{q}d\Omega&\forall\boldsymbol{q}\in\boldsymbol{W} \end{cases}

-\int\Omega\nabla(D\nablau(t))pd\Omega=\int\OmegaD\nablau(t)\nablapd\Omega-\cancelto{NeumannB.C.

}

Finally the weak formulation reads:

Find

u\inL2(0,T;H1(\Omega))

and

\boldsymbol{z}\inL2(0,T;[L2(\Omega)]3)

,

\forallt\in(0,T)

, such that[6]

\begin{cases} \displaystyle\int\Omega

du(t)
dt

pd\Omega+\int\OmegaD\nablau(t)\nablapd\Omega+\int\Omega(Jfi+Jso+Jsi)pd\Omega=0&\forallp\inU\\[5pt] \displaystyle\int\Omega

d\boldsymbol{z
(t)}{dt}

\boldsymbol{q}d\Omega=\int\Omega\boldsymbol{F}(u(t),\boldsymbol{z}(t))\boldsymbol{q}d\Omega&\forall\boldsymbol{q}\in\boldsymbol{W}\\[5pt] u(0)=u0\\[5pt] \boldsymbol{z}(0)=\boldsymbol{z}0 \end{cases}

Numerical discretization

There are several methods to discretize in space this system of equations, such as the finite element method (FEM) or isogeometric analysis (IGA).[7] [8]

Time discretization can be performed in several ways as well, such as using a backward differentiation formula (BDF) of order

\sigma

or a Runge–Kutta method (RK).

Space discretization with FEM

Let

l{T}h

be a tessellation of the computational domain

\Omega

by means of a certain type of elements (such as tetrahedrons or hexahedra), with

h

representing a chosen measure of the size of a single element

K\inl{T}h

. Consider the set

Pr(K)

of polynomials with degree smaller or equal than

r

over an element

K

. Define
r
l{X}
h

=\{f\inC0(\bar\Omega):f|K\inPr(K)\forallK\inl{T}h\}

as the finite dimensional space, whose dimension is

Nh=\dim(l{X}

r)
h
. The set of basis functions of
r
l{X}
h
is referred to as

\{\phii

Nh
\}
i=1
.

The semidiscretized formulation of the first equation of the model reads: find

uh=uh(t)=

Nh
\sum
j=1

\bar{u}j(t)\phij

projection of the solution

u(t)

on
r
l{X}
h
,

\forallt\in(0,T)

, such that[5]

\int\Omega{

u
}_ \phi_i \, d \Omega + \int_\Omega (D \nabla u_h) \cdot \nabla \phi_i \, d\Omega + \int_\Omega J_\text(u_h, \boldsymbol_h) \phi_i \, d \Omega = 0 \quad \text i = 1, \ldots, N_h

with

uh(0)=

Nh
\sum
j=1

\left(\int\Omegau0\phijd\Omega\right)\phij

,

\boldsymbol{z}h=\boldsymbol{z}h(t)=[vh(t),wh(t),

T
s
h(t)]
semidiscretized version of the three gating variables, and

Jion(uh,\boldsymbol{z}h)=Jfi(uh,\boldsymbol{z}h)+Jso(uh,\boldsymbol{z}h)+Jsi(uh,\boldsymbol{z}h)

is the total ionic density current.[5]

The space discretized version of the first equation can be rewritten as a system of non-linear ODEs by setting

\boldsymbol{U}h(t)=\{\bar{u}j(t)

Nh
\}
j=1
and

\boldsymbol{Z}h(t)=\{\bar{\boldsymbol{z}}j(t)

Nh
\}
j=1
:

\begin{cases} M

\boldsymbol{U
}_h(t) + \mathbb \boldsymbol_h(t) + \boldsymbol_\text(\boldsymbol_h(t), \boldsymbol_h(t)) = 0 & \forall t \in (0, T) \\\boldsymbol_h(0) = \boldsymbol_\end

where

Mij=\int\Omega\phij\phiid\Omega

,

Kij=\int\OmegaD\nabla\phij\nabla\phiid\Omega

and

\left(\boldsymbol{J}ion(\boldsymbol{U}h(t),\boldsymbol{z}h(t))\right)i=\int\OmegaJion(uh,\boldsymbol{z}h)\phiid\Omega

.[5]

The non-linear term

\boldsymbol{J}ion(\boldsymbol{U}h(t),\boldsymbol{Z}h(t))

can be treated in different ways, such as using state variable interpolation (SVI) or ionic currents interpolation (ICI).[9] [10] In the framework of SVI, by denoting with

\{

K
\boldsymbol{x}
s
Nq
\}
s=1
and

\{

K
\omega
s
Nq
\}
s=1
the quadrature nodes and weights of a generic element of the mesh

K\inl{T}h

, both

uh

and

\boldsymbol{z}h

are evaluated at the quadrature nodes:

\int\OmegaJion(uh,\boldsymbol{z}h)\phiid\Omega\sumKh}\left(

Nq
\sum
s=1

Jion\left(

Nh
\sum
j=1

\bar{u}j(t)\phij(\boldsymbol{x}

K),
s
Nh
\sum
j=1

\bar{\boldsymbol{z}}j(t)\phij(\boldsymbol{x}

K)
s

\right)\phii(\boldsymbol{x}

K)
s
K
\omega
s

\right)

The equations for the three gating variables, which are ODEs, are directly solved in all the degrees of freedom (DOF) of the tessellation

l{T}h

separately, leading to the following semidiscrete form:
\begin{cases} \boldsymbol{Z
}_h(t) = \boldsymbol(\boldsymbol_h(t), \boldsymbol_h(t)) & \forall t \in (0, T) \\\boldsymbol_h(0) = \boldsymbol_\end

Time discretization with BDF (implicit scheme)

With reference to the time interval

(0,T]

, let

\Deltat=\dfrac{T}{N}

be the chosen time step, with

N

number of subintervals. A uniform partition in time

[t0=0,t1=\Deltat,\ldots,tk,\ldots,tN-1,tN=T]

is finally obtained.[7]

At this stage, the full discretization of the Bueno-Orovio ionic model can be performed both in a monolithic and segregated fashion.[11] With respect to the first methodology (the monolithic one), at time

t=tk

, the full problem is entirely solved in one step in order to get
k+1
(\boldsymbol{U}
h

,

k+1
\boldsymbol{Z}
h

)

by means of either Newton method or Fixed-point iterations:

\begin{cases} M\alpha\dfrac{

k+1
\boldsymbol{U}
h

-

k
\boldsymbol{U}
ext,h
} + \mathbb \boldsymbol_h^ + \boldsymbol_\text(\boldsymbol_^, \boldsymbol_^) = 0 \\\alpha \dfrac = \boldsymbol(\boldsymbol_h^, \boldsymbol_h^)\end

where

k
\boldsymbol{U}
ext,h
and
k
\boldsymbol{Z}
ext,h
are extrapolations of transmembrane potential and gating variables at previous timesteps with respect to

tk+1

, considering as many time instants as the order

\sigma

of the BDF scheme.

\alpha

is a coefficient which depends on the BDF order

\sigma

.

If a segregated method is employed, the equation for the evolution in time of the transmembrane potential and the ones of the gating variables are numerically solved separately:

k+1
\boldsymbol{Z}
h
is calculated, using an extrapolation at previous timesteps
k
\boldsymbol{U}
ext,h
for the transmembrane potential at the right hand side:

\alpha

k+1
\dfrac{\boldsymbol{Z}
h

-

k
\boldsymbol{Z}
ext,h
} = \boldsymbol(\boldsymbol_^k, \boldsymbol_h^)
k+1
\boldsymbol{U}
h
is computed, exploiting the value of
k+1
\boldsymbol{Z}
h
that has just been calculated:

M\alpha\dfrac{

k+1
\boldsymbol{U}
h

-

k}{\Delta
\boldsymbol{U}
ext,h

t}+K

k+1
\boldsymbol{U}
h

+\boldsymbol{J}ion(\boldsymbol{U}

k+1
h

,

k+1
\boldsymbol{Z}
h

)=0

Another possible segregated scheme would be the one in which

k+1
\boldsymbol{U}
h
is calculated first, and then it is used in the equations for
k+1
\boldsymbol{Z}
h
.

See also

Notes and References

  1. Bueno-Orovio . A. . Cherry . E.M. . Fenton . F. H. . Minimal model for human ventricular action potentials in tissue . Journal of Theoretical Biology . August 2008 . 253 . 3 . 544–560 . 10.1016/j.jtbi.2008.03.029. 18495166 .
  2. Book: Colli Franzone . P. . Pavarino . L.F. . Scacchi . S. . Mathematical cardiac electrophysiology . 30 October 2014 . 978-3-319-04801-7.
  3. Book: Sundnes . J. . Lines . G.T. . Cai . X. . Nielsen . B.F. . Mardal . K.-A. . Tveito . A. . Computing the electrical activity in the heart . 26 June 2007 . Springer . 978-3-540-33437-8.
  4. Book: Keener . J. . Sneyd . J. . Mathematical physiology . 27 October 2008 . Springer . 978-0-387-79387-0 . 2nd.
  5. Gerbi . A. . Dede’ . L. . Quarteroni . A. . A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle . Mathematics in Engineering. 2018 . 1 . 1 . 1–37 . 10.3934/Mine.2018.1.1. free . 11311/1066015 . free .
  6. Pegolotti . L. . Dedè . L. . Quarteroni . A. . Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria . Computer Methods in Applied Mechanics and Engineering . January 2019 . 343 . 52–73 . 10.1016/j.cma.2018.08.032. 2019CMAME.343...52P .
  7. Book: Quarteroni . A. . Numerical models for differential problems . 25 April 2014 . 978-88-470-5522-3 . Second.
  8. Book: Cottrell . J. . Hughes . T.J.R. . Bazilevs . Y. . Isogeometric analysis: toward integration of CAD and FEA . 15 September 2009 . Wiley . 978-0-470-74873-2.
  9. Pathmanathan . P. . Mirams . G.R. . Southern . J. . Whiteley . J.P. . The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations . International Journal for Numerical Methods in Biomedical Engineering . November 2011 . 27 . 11 . 1751–1770 . 10.1002/cnm.1438.
  10. Pathmanathan . P. . Bernabeu . M.O. . Niederer . S.A. . Gavaghan . D.J. . Kay . D. . Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers . International Journal for Numerical Methods in Biomedical Engineering . August 2012 . 28 . 8 . 890–903 . 10.1002/cnm.2467. 25099569 .
  11. Gerbi . A. . Dede' . L. . Quarteroni . A. . Numerical approximation of cardiac electro-fluid-mechanical models: coupling strategies for large-scale simulation . PhD Thesis . École Polytechnique Fédérale de Lausanne.