The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells.[1] It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.[2] [3]
This mathematical model reproduces both single cell and important tissue-level properties, accounting for physiological action potential development and conduction velocity estimations.[1] It also provides specific parameters choices, derived from parameter-fitting algorithms of the MATLAB Optimization Toolbox, for the modeling of epicardial, endocardial and myd-myocardial tissues. In this way it is possible to match the action potential morphologies, observed from experimental data, in the three different regions of the human ventricles.The Bueno-Orovio–Cherry–Fenton model is also able to describe reentrant and spiral wave dynamics, which occurs for instance during tachycardia or other types of arrhythmias.
From the mathematical perspective, it consists of a system of four differential equations. One PDE, similar to the monodomain model, for an adimensional version of the transmembrane potential, and three ODEs that define the evolution of the so-called gating variables, i.e. probability density functions whose aim is to model the fraction of open ion channels across a cell membrane.[4]
The system of four differential equations reads as follows:
\begin{cases} \dfrac{\partialu}{\partialt}=\nabla ⋅ (D\nablau)-(Jfi+Jso+Jsi)&in\Omega x (0,T)\\[5pt] \dfrac{\partialv}{\partialt}=\dfrac{(1-H(u-\thetav))(vinfty-
-} | |
v)}{\tau | |
v |
-\dfrac{H(u-\thetav)
+} | |
v}{\tau | |
v |
&in\Omega x (0,T)\\[5pt] \dfrac{\partialw}{\partialt}=\dfrac{(1-H(u-\thetaw))(winfty-
-} | |
w)}{\tau | |
w |
-\dfrac{H(u-\thetaw)
+} | |
w}{\tau | |
w |
&in\Omega x (0,T)\\[5pt] \dfrac{\partials}{\partialt}=\dfrac{1}{\taus}\left(\dfrac{1+\tanh(ks(u-us))}{2}-s\right)&in\Omega x (0,T)\\[5pt] (D\nablau) ⋅ \boldsymbol{N}=0&on\partial\Omega x (0,T)\\[5pt] u=u0,v=v0,w=w0,s=s0&in\Omega x \{0\}\end{cases}
where
\Omega
T
u0=0
v0=1
w0=1
s0=0
H(x-x0)
x0
u
VmV=85.7u-84
v
w
s
s
2+ | |
{{Ca} | |
i} |
Jfi,Jso
Jsi
Jfi=-
vH(u-\thetav)(u-\thetav)(uu-u) | |
\taufi |
,
Jso=
(u-uo)(1-H(u-\thetaw)) | |
\tauo |
+
H(u-\thetaw) | |
\tauso |
,
Jsi=-
H(u-\thetaw)ws | |
\tausi |
,
All the above-mentioned ionic density currents are partially adimensional and are expressed in
\dfrac{1}{seconds
Different parameters sets, as shown in Table 1, can be used to reproduce the action potential development of epicardial, endocardial and mid-myocardial human ventricular cells. There are some constants of the model, which are not located in Table 1, that can be deduced with the following formulas:
- | |
\tau | |
v |
=(1-H(u-
-)) | |
\theta | |
v |
- | |
\tau | |
v1 |
+H(u-
-) | |
\theta | |
v |
-, | |
\tau | |
v2 |
- | |
\tau | |
w |
=
- | |
\tau | |
w1 |
+
- | |
(\tau | |
w2 |
-
-)(1 | |
\tau | |
w1 |
+
-(u | |
\tanh(k | |
w |
-
-)))/2, | |
u | |
w |
\tauso=\tau{so1}+(\tau{so2}-\tau{so1})(1+\tanh(kso(u-uso)))/2,
\taus=(1-H(u-\thetaw))
\tau | |
s1 |
+H(u-\thetaw)
\tau | |
s2 |
,
\tauo=(1-H(u-\thetao))
\tau | |
o1 |
+H(u-\thetao)
\tau | |
o2 |
,
vinfty=1-H(u-
-), | |
\theta | |
v |
winfty=(1-H(u-\thetao))(1-
u/\tau | |
winfty |
)+H(u-\thetao)
*. | |
w | |
infty |
where the temporal constants, i.e.
-, | |
\tau | |
v |
-, | |
\tau | |
w |
\tauso,\taus,\tauo
vinfty
winfty
The diffusion coefficient
D
1.171\pm0.221\dfrac{cm2}{seconds
In order to trigger the action potential development in a certain position of the domain
\Omega
Japp(\boldsymbolx,t)
Parameter | uo | uu | \thetav | \thetaw |
| \thetao |
|
|
|
|
|
|
|
| \taufi |
|
| \tau{so1} | \tau{so2} | kso | uso |
|
| ks | us | \tausi |
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unity of measure | - | - | - | - | - | - | seconds | seconds | seconds | seconds | seconds | - | - | seconds | seconds | seconds | seconds | seconds | seconds | - | - | seconds | seconds | - | - | seconds | - | - | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Epicardium | 0 | 1.55 | 0.3 | 0.13 | 0.006 | 0.006 | 60e-3 | 1150e-3 | 1.4506e-3 | 60e-3 | 15e-3 | 65 | 0.03 | 200e-3 | 0.11e-3 | 400e-3 | 6e-3 | 30.0181e-3 | 0.9957e-3 | 2.0458 | 0.65 | 2.7342e-3 | 16e-3 | 2.0994 | 0.9087 | 1.8875e-3 | 0.07 | 0.94 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Endocardium | 0 | 1.56 | 0.3 | 0.13 | 0.2 | 0.006 | 75e-3 | 10e-3 | 1.4506e-3 | 6e-3 | 140e-3 | 200 | 0.016 | 280e-3 | 0.1e-3 | 470e-3 | 6e-3 | 40e-3 | 1.2e-3 | 2 | 0.65 | 2.7342e-3 | 2e-3 | 2.0994 | 0.9087 | 2.9013e-3 | 0.0273 | 0.78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Myocardium | 0 | 1.61 | 0.3 | 0.13 | 0.1 | 0.005 | 80e-3 | 1.4506e-3 | 1.4506e-3 | 70e-3 | 8e-3 | 200 | 0.016 | 280e-3 | 0.078e-3 | 410e-3 | 7e-3 | 91e-3 | 0.8e-3 | 2.1 | 0.6 | 2.7342e-3 | 4e-3 | 2.0994 | 0.9087 | 3.3849e-3 | 0.01 | 0.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assume that
\boldsymbol{z}
\boldsymbol{z}=[v,w,s]T
\boldsymbol{F}:R4 → R3
\begin{cases} \dfrac{\partialu}{\partialt}-\nabla ⋅ (D\nablau)+(Jfi+Jso+Jsi)=0&in\Omega x (0,T)\\[5pt] \dfrac{\partial\boldsymbol{z}}{\partialt}=\boldsymbol{F}(u,\boldsymbol{z})&in\Omega x (0,T)\\ \end{cases}
Let
p\inU=H1(\Omega)
\boldsymbol{q}\in\boldsymbol{W}=[L2(\Omega)]3
To obtain the weak formulation:
p\inU
\boldsymbol{q}\in\boldsymbol{W}
\Omega
\begin{cases} \displaystyle\int\Omega\dfrac{du(t)}{dt}pd\Omega-\int\Omega\nabla ⋅ (D\nablau(t))pd\Omega+\int\Omega(Jfi+Jso+Jsi)pd\Omega=0&\forallp\inU\\[5pt] \displaystyle\int\Omega\dfrac{d\boldsymbol{z}(t)}{dt}\boldsymbol{q}d\Omega=\int\Omega\boldsymbol{F}(u(t),\boldsymbol{z}(t))\boldsymbol{q}d\Omega&\forall\boldsymbol{q}\in\boldsymbol{W} \end{cases}
-\int\Omega\nabla ⋅ (D\nablau(t))pd\Omega=\int\OmegaD\nablau(t)\nablapd\Omega-\cancelto{NeumannB.C.
Finally the weak formulation reads:
Find
u\inL2(0,T;H1(\Omega))
\boldsymbol{z}\inL2(0,T;[L2(\Omega)]3)
\forallt\in(0,T)
\begin{cases} \displaystyle\int\Omega
du(t) | |
dt |
pd\Omega+\int\OmegaD\nablau(t) ⋅ \nablapd\Omega+\int\Omega(Jfi+Jso+Jsi)pd\Omega=0&\forallp\inU\\[5pt] \displaystyle\int\Omega
d\boldsymbol{z | |
(t)}{dt} |
\boldsymbol{q}d\Omega=\int\Omega\boldsymbol{F}(u(t),\boldsymbol{z}(t))\boldsymbol{q}d\Omega&\forall\boldsymbol{q}\in\boldsymbol{W}\\[5pt] u(0)=u0\\[5pt] \boldsymbol{z}(0)=\boldsymbol{z}0 \end{cases}
There are several methods to discretize in space this system of equations, such as the finite element method (FEM) or isogeometric analysis (IGA).[7] [8]
Time discretization can be performed in several ways as well, such as using a backward differentiation formula (BDF) of order
\sigma
Let
l{T}h
\Omega
h
K\inl{T}h
Pr(K)
r
K
r | |
l{X} | |
h |
=\{f\inC0(\bar\Omega):f|K\inPr(K)\forallK\inl{T}h\}
Nh=\dim(l{X}
r) | |
h |
r | |
l{X} | |
h |
\{\phii
Nh | |
\} | |
i=1 |
The semidiscretized formulation of the first equation of the model reads: find
uh=uh(t)=
Nh | |
\sum | |
j=1 |
\bar{u}j(t)\phij
u(t)
r | |
l{X} | |
h |
\forallt\in(0,T)
\int\Omega{
u |
with
uh(0)=
Nh | |
\sum | |
j=1 |
\left(\int\Omegau0\phijd\Omega\right)\phij
\boldsymbol{z}h=\boldsymbol{z}h(t)=[vh(t),wh(t),
T | |
s | |
h(t)] |
Jion(uh,\boldsymbol{z}h)=Jfi(uh,\boldsymbol{z}h)+Jso(uh,\boldsymbol{z}h)+Jsi(uh,\boldsymbol{z}h)
The space discretized version of the first equation can be rewritten as a system of non-linear ODEs by setting
\boldsymbol{U}h(t)=\{\bar{u}j(t)
Nh | |
\} | |
j=1 |
\boldsymbol{Z}h(t)=\{\bar{\boldsymbol{z}}j(t)
Nh | |
\} | |
j=1 |
\begin{cases} M
\boldsymbol{U |
where
Mij=\int\Omega\phij\phiid\Omega
Kij=\int\OmegaD\nabla\phij ⋅ \nabla\phiid\Omega
\left(\boldsymbol{J}ion(\boldsymbol{U}h(t),\boldsymbol{z}h(t))\right)i=\int\OmegaJion(uh,\boldsymbol{z}h)\phiid\Omega
The non-linear term
\boldsymbol{J}ion(\boldsymbol{U}h(t),\boldsymbol{Z}h(t))
\{
K | |
\boldsymbol{x} | |
s |
Nq | |
\} | |
s=1 |
\{
K | |
\omega | |
s |
Nq | |
\} | |
s=1 |
K\inl{T}h
uh
\boldsymbol{z}h
\int\OmegaJion(uh,\boldsymbol{z}h)\phiid\Omega ≈ \sumKh}\left(
Nq | |
\sum | |
s=1 |
Jion\left(
Nh | |
\sum | |
j=1 |
\bar{u}j(t)\phij(\boldsymbol{x}
K), | |
s |
Nh | |
\sum | |
j=1 |
\bar{\boldsymbol{z}}j(t)\phij(\boldsymbol{x}
K) | |
s |
\right)\phii(\boldsymbol{x}
K) | |
s |
K | |
\omega | |
s |
\right)
The equations for the three gating variables, which are ODEs, are directly solved in all the degrees of freedom (DOF) of the tessellation
l{T}h
\begin{cases} \boldsymbol{Z |
With reference to the time interval
(0,T]
\Deltat=\dfrac{T}{N}
N
[t0=0,t1=\Deltat,\ldots,tk,\ldots,tN-1,tN=T]
At this stage, the full discretization of the Bueno-Orovio ionic model can be performed both in a monolithic and segregated fashion.[11] With respect to the first methodology (the monolithic one), at time
t=tk
k+1 | |
(\boldsymbol{U} | |
h |
,
k+1 | |
\boldsymbol{Z} | |
h |
)
\begin{cases} M\alpha\dfrac{
k+1 | |
\boldsymbol{U} | |
h |
-
k | |
\boldsymbol{U} | |
ext,h |
where
k | |
\boldsymbol{U} | |
ext,h |
k | |
\boldsymbol{Z} | |
ext,h |
tk+1
\sigma
\alpha
\sigma
If a segregated method is employed, the equation for the evolution in time of the transmembrane potential and the ones of the gating variables are numerically solved separately:
k+1 | |
\boldsymbol{Z} | |
h |
k | |
\boldsymbol{U} | |
ext,h |
\alpha
k+1 | |
\dfrac{\boldsymbol{Z} | |
h |
-
k | |
\boldsymbol{Z} | |
ext,h |
k+1 | |
\boldsymbol{U} | |
h |
k+1 | |
\boldsymbol{Z} | |
h |
M\alpha\dfrac{
k+1 | |
\boldsymbol{U} | |
h |
-
k}{\Delta | |
\boldsymbol{U} | |
ext,h |
t}+K
k+1 | |
\boldsymbol{U} | |
h |
+\boldsymbol{J}ion(\boldsymbol{U}
k+1 | |
h |
,
k+1 | |
\boldsymbol{Z} | |
h |
)=0
Another possible segregated scheme would be the one in which
k+1 | |
\boldsymbol{U} | |
h |
k+1 | |
\boldsymbol{Z} | |
h |