\psi\nu(\alpha)
\theta
Buchholz defined his functions as follows. Define:
The functions ψv(α) for α an ordinal, v an ordinal at most ω, are defined by induction on α as follows:
where Cv(α) is the smallest set such that
The limit of this notation is the Takeuti–Feferman–Buchholz ordinal.
Let
P
\psi\nu(0)=\Omega\nu,
\psi\nu(\alpha)\inP,
\psi\nu(\alpha+1)=min\{\gamma\inP:\psi\nu(\alpha)<\gamma\}if\alpha\inC\nu(\alpha),
\Omega\nu\le\psi\nu(\alpha)<\Omega\nu+1
\alpha | |
\psi | |
0(\alpha)=\omega |
if\alpha<\varepsilon0,
\Omega\nu+\alpha | |
\psi | |
\nu(\alpha)=\omega |
if
\alpha<\varepsilon | |
\Omega\nu+1 |
and\nu ≠ 0,
\theta(\varepsilon | |
\Omega\nu+1 |
,0)=\psi(\varepsilon | |
\Omega\nu+1 |
)for0<\nu\le\omega.
The normal form for 0 is 0. If
\alpha
\alpha<\Omega\omega
\alpha
\alpha=\psi | |
\nu1 |
(\beta1)+\psi
\nu2 |
(\beta2)+ … +\psi
\nuk |
(\betak)
\nui\inN0,k\inN>0,\betai\in
C | |
\nui |
(\betai)
\psi | |
\nu1 |
(\beta1)\geq\psi
\nu2 |
(\beta2)\geq … \geq\psi
\nuk |
(\betak)
\betai
The fundamental sequence for an ordinal number
\alpha
\operatorname{cof}(\alpha)=\beta
(\alpha[η])η<\beta
\beta
\alpha
\alpha[η]
η
\alpha
\operatorname{cof}(\alpha)=1
\alpha[0]=\alpha-1
\alpha
\operatorname{cof}(\alpha)\in\{\omega\}\cup\{\Omega\mu+1\mid\mu\geq0\}
For nonzero ordinals
\alpha<\Omega\omega
\alpha=\psi | |
\nu1 |
(\beta1)+\psi
\nu2 |
(\beta2)+ … +\psi
\nuk |
(\betak)
k\geq2
\operatorname{cof}(\alpha)=\operatorname{cof}(\psi | |
\nuk |
(\betak))
\alpha[η]=\psi | |
\nu1 |
(\beta1)+ … +\psi
\nuk-1 |
(\betak-1
)+(\psi | |
\nuk |
(\betak)[η]),
\alpha=\psi0(0)=1
\operatorname{cof}(\alpha)=1
\alpha[0]=0
\alpha=\psi\nu+1(0)
\operatorname{cof}(\alpha)=\Omega\nu+1
\alpha[η]=\Omega\nu+1[η]=η
\alpha=\psi\nu(\beta+1)
\operatorname{cof}(\alpha)=\omega
\alpha[η]=\psi\nu(\beta) ⋅ η
\psi\nu(0)=\Omega\nu
\alpha=\psi\nu(\beta)
\operatorname{cof}(\beta)\in\{\omega\}\cup\{\Omega\mu+1\mid\mu<\nu\}
\operatorname{cof}(\alpha)=\operatorname{cof}(\beta)
\alpha[η]=\psi\nu(\beta[η])
\alpha=\psi\nu(\beta)
\operatorname{cof}(\beta)\in\{\Omega\mu+1\mid\mu\geq\nu\}
\operatorname{cof}(\alpha)=\omega
\alpha[η]=\psi\nu(\beta[\gamma[η]])
\left\{\begin{array}{lcr}\gamma[0]=\Omega\mu\ \gamma[η+1]=\psi\mu(\beta[\gamma[η]])\ \end{array}\right.
Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal
\alpha
\{\beta\mid\beta<\alpha\}
0(\alpha)=\Omega | |
C | |
\nu |
0(\alpha) | |
C | |
\nu |
\Omega\nu
0(\alpha)=\{\beta\mid\beta<\Omega | |
C | |
\nu\} |
The condition
n+1 | |
C | |
\nu |
(\alpha)=
n(\alpha) | |
C | |
\nu |
\cup\{\gamma\midP(\gamma)\subseteq
n(\alpha)\} | |
C | |
\nu |
\cup\{\psi\mu(\xi)\mid\xi\in\alpha\cap
n(\alpha) | |
C | |
\nu |
\wedge\mu\leq\omega\}
n+1 | |
C | |
\nu |
(\alpha)
n(\alpha) | |
C | |
\nu |
n(\alpha) | |
C | |
\nu |
\alpha
n(\alpha) | |
C | |
\nu |
\psi\mu
\mu\le\omega
That is why we can rewrite this condition as:
n+1 | |
C | |
\nu |
(\alpha)=\{\beta+\gamma,\psi\mu(η)\mid\beta,\gamma,η\in
n(\alpha)\wedgeη<\alpha | |
C | |
\nu |
\wedge\mu\leq\omega\}.
Thus union of all sets
n | |
C | |
\nu |
(\alpha)
n<\omega
C\nu(\alpha)=cupn
n | |
C | |
\nu |
(\alpha)
<\aleph\nu
\psi\mu(η)
\mu\le\omega
η<\alpha
Then
\psi\nu(\alpha)=min\{\gamma\mid\gamma\not\inC\nu(\alpha)\}
Examples
Consider the following examples:
0(\alpha)=\{0\} | |
C | |
0 |
=\{\beta\mid\beta<1\},
C0(0)=\{0\}
\psi(η<0)
Then
\psi0(0)=1
C0(1)
\psi0(0)=1
\psi0(1)=\omega
C0(2)
\psi0(0)=1,\psi0(1)=\omega
2 | |
\psi | |
0(2)=\omega |
If
\alpha=\omega
2,\ldots,\psi(3)=\omega | |
C | |
0(\alpha)=\{0,\psi(0)=1,\ldots,\psi(1)=\omega,\ldots,\psi(2)=\omega |
3,\ldots\}
\omega | |
\psi | |
0(\omega)=\omega |
If
\alpha=\Omega
C0(\alpha)=\{0,\psi(0)=1,\ldots,\psi(1)=\omega,\ldots,\psi(\omega)=\omega\omega,\ldots,\psi(\omega\omega)=
\omega\omega | |
\omega |
,\ldots\}
\psi0(\Omega)=\varepsilon0
\alpha=\omega\alpha
If
\alpha=\Omega+1
C0(\alpha)=\{0,1,\ldots,\psi0(\Omega)=\varepsilon0,\ldots,\varepsilon0+\varepsilon0,\ldots,\psi1(0)=\Omega,\ldots\}
\psi0(\Omega+1)=\varepsilon
\varepsilon0+1 | |
0\omega=\omega |
\psi0(\Omega2)=\varepsilon1
2) | |
\psi | |
0(\Omega |
=
\varepsilon | |
\varepsilon … |
=\zeta0
\alpha=\varepsilon\alpha
\alpha(1+\beta)) | |
\varphi(\alpha,\beta)=\psi | |
0(\Omega |
\varphi
\Omega)=\Gamma | |
\psi | |
0=\varphi(1,0,0)=\theta(\Omega,0) |
\theta
\Gamma0
\Omega2 | |
\psi | |
0(\Omega |
)=\varphi(1,0,0,0)
\Omega\omega | |
\psi | |
0(\Omega |
)
\Omega\Omega | |
\psi | |
0(\Omega |
)
\psi0(\Omega\uparrow\uparrow\omega)=\psi0(\varepsilon\Omega+1)=\theta(\varepsilon\Omega+1,0).
Now let's research how
\psi1
0(0)=\{\beta\mid\beta<\Omega | |
C | |
1\}=\{0,\psi(0) |
=1,2,\ldotsgoogol,\ldots,\psi0(1)=\omega,\ldots,\psi0(\Omega)=\varepsilon0,\ldots
\Omega\Omega+\Omega2 | |
\ldots,\psi | |
0,\ldots,\psi(\Omega |
),\ldots\}
C1(0)
\psi1(0)=\Omega1
\aleph1
If
\alpha=1
C1(\alpha)=\{0,\ldots,\psi0(0)=\omega,\ldots,\psi1(0)=\Omega,\ldots,\Omega+\omega,\ldots,\Omega+\Omega,\ldots\}
\Omega+1 | |
\psi | |
1(1)=\Omega\omega=\omega |
2=\omega | |
\psi | |
1(2)=\Omega\omega |
\Omega+2,
\psi1(\psi1(0))=\psi
2=\omega | |
1(\Omega)=\Omega |
\Omega+\Omega,
\psi1(\psi1(\psi1(0)))
\Omega+\omega\Omega+\Omega | |
=\omega |
=\omega\Omega ⋅ \Omega=(\omega\Omega)\Omega=\Omega\Omega,
4(0)=\Omega | |
\psi | |
1 |
\Omega\Omega | |
,
k+1 | |
\psi | |
1 |
(0)=\Omega\uparrow\uparrowk
k
k\geq2
\psi1(\Omega2)=
\omega(0) | |
\psi | |
1 |
=\Omega\uparrow\uparrow\omega=\varepsilon\Omega+1.
For case
\psi(\psi2(0))=\psi(\Omega2)
C0(\Omega2)
\psi0
\Omega2
0,\psi1(0),\psi1(\psi1(0)),
3(0),\ldots, | |
\psi | |
1 |
\omega(0) | |
\psi | |
1 |
and then
\psi0(\Omega2)=\psi0(\psi1(\Omega2))=\psi0(\varepsilon\Omega+1).
In the general case:
\psi0(\Omega\nu+1)=\psi0(\psi\nu(\Omega\nu+1))=\psi0(\varepsilon
\Omega\nu+1 |
)=
\theta(\varepsilon | |
\Omega\nu+1 |
,0).
We also can write:
\theta(\Omega\nu,0)=\psi0(\Omega
\Omega) | |
\nu |
(for1\le\nu)<\omega
(OT,<)
\psi
T
PT
0,Dv
v\in\omega+1
0\inT ∧ 0\inPT
\forall(v,a)\in(\omega+1) x T(Dva\inT ∧ Dva\inPT)
\forall(a0,a1)\in
2((a | |
PT | |
0, |
a1)\inT)
\existss(a0=s) ∧ (a0,a1)\inT x PT → (s,a1)\inT
An element of
T
PT
T
PT
T
0
\geq2
a\inPT
(a)
0
T
PT
\geq2
a<b
T
b=0 → a<b=\bot
a=0 → (a<b\leftrightarrowb ≠ 0)
a ≠ 0 ∧ b ≠ 0
a=Dua' ∧ b=Dvb'
((u,a'),(v,b'))\in((\omega+1) x T)2
a<b
u<v
u=v ∧ a'<b'
a=(a0,...,an) ∧ b=(b0,...,bm)
(n,m)\in\N2 ∧ 1\leqn+m
a<b
\foralli\in\N ∧ i\leqn(n<m ∧ ai=bi)
\existsk\in\N\foralli\in\N ∧ i<k(k\leqmin\{n,m\} ∧ ak<bk ∧ ai=b1)
<
T
(a<b)\or(a=b)
a\leqb
\leq
OT\subsetT
OT
Gua\subsetT
(u,a)\in(\omega+1) x T
a=0 → Gua=\varnothing
a=Dva'
(v,a')\in(\omega+1) x T
u\leqv → Gua=\{a'\}\cupGua'
u>v → Gua=\varnothing
a=(a0,...,ak)
(ai)
k | |
i=0 |
\inPTk
k\in\N\backslash\{0\},Gua=
k | |
cup | |
i=0 |
Guai
b\inGua
(u,a,b)\in(\omega+1) x T2
OT\subsetT
0\inOT
(v,a)\in(\omega+1) x T
Dva\inOT
a\inOT
a'\inGva
a'<a
(ai)
k | |
i=0 |
\inPTk
(a0,...,ak)\inOT
(ai)
k | |
i=0 |
\inOT
ak\leq...\leqa0
OT
T
OT
o:OT → C0(\varepsilon
\Omega\omega+1 |
)
a=0 → o(a)=0
a=Dva'
(v,a')\in(\omega+1) x OT
o(a)=\psiv(o(a'))
a=(a0,...,ak)
(ai)
k | |
i=0 |
\in(OT\capPT)k+1
k\in\N\backslash\{0\}
o(a)=o(a0)\#...\#o(ak)
\#
OT
Buchholz verified the following properties of
o
o
<
\in
o
OT
a\inOT
a<D10
o(a)
<
\{x\inOT | x<a\}
<
\{x\inOT | x<D10\}
(OT,<)
v\in\N \backslash \{0\}
<
\{x\inOT | x<D0Dv+10\}
IDv
<
\{x\inOT | x<D0D\omega0\}
1 | |
\Pi | |
1 |
-CA0
The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by
o
NF
C0(\varepsilon
\Omega\omega+1 |
)
\alpha=NF0
\alpha\inC0(\varepsilon
\Omega\omega+1 |
)
\alpha=0
NF
\alpha0=NF
\psi | |
k1 |
(\alpha1)
\alpha0,\alpha1\inC0(\varepsilon
\Omega\omega+1 |
)
k1=\omega+1
\alpha0=
\psi | |
k1 |
(\alpha1)
\alpha1=
C | |
k1 |
(\alpha1)
NF
\alpha0=NF\alpha1+...+\alphan
\alpha0,\alpha1,...,\alphan\inC0(\varepsilon
\Omega\omega+1 |
)
n>1
\alpha0=\alpha1+...+\alphan
\alpha1\geq...\geq\alphan
\alpha1,...,\alphan\inAP
NF
+
AP
It is also useful to replace the third case by the following one obtained by combining the second condition:
\alpha0=NF
\psi | |
k1 |
(\alpha1)+...+
\psi | |
kn |
(\alphan)
\alpha0,\alpha1,...,\alphan\inC0(\varepsilon
\Omega\omega+1 |
)
n>1
k1,...,kn\in\omega+1
\alpha0=
\psi | |
k1 |
(\alpha1)+...+
\psi | |
kn |
(\alphan)
\psi | |
k1 |
(\alpha1)\geq...\geq
\psi | |
kn |
(\alphan)
\alpha1\in
C | |
k1 |
(\alpha1),...,\alphan\in
C | |
kn |
(\alphan)\inAP
NF
We note that those two formulations are not equivalent. For example,
\psi0(\Omega)+1=NF\psi0(\zeta1)+\psi0(0)
\zeta1 ≠ C0(\zeta1)
\psi0(\Omega)+1=\psi0(\zeta1)+\psi0(0)
\psi0(\zeta1),\psi0(0)\inAP
\psi0(\zeta1)\geq\psi0(0)
C0(\varepsilon
\Omega\omega+1 |
)