Buchholz psi functions explained

\psi\nu(\alpha)

introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the

\theta

-functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger[1] and Schütte.[2]

Definition

Buchholz defined his functions as follows. Define:

The functions ψv(α) for α an ordinal, v an ordinal at most ω, are defined by induction on α as follows:

where Cv(α) is the smallest set such that

The limit of this notation is the Takeuti–Feferman–Buchholz ordinal.

Properties

Let

P

be the class of additively principal ordinals. Buchholz showed following properties of this functions:

\psi\nu(0)=\Omega\nu,

[3]

\psi\nu(\alpha)\inP,

\psi\nu(\alpha+1)=min\{\gamma\inP:\psi\nu(\alpha)<\gamma\}if\alpha\inC\nu(\alpha),

\Omega\nu\le\psi\nu(\alpha)<\Omega\nu+1

\alpha
\psi
0(\alpha)=\omega

if\alpha<\varepsilon0,

\Omega\nu+\alpha
\psi
\nu(\alpha)=\omega

if

\alpha<\varepsilon
\Omega\nu+1

and\nu0,

\theta(\varepsilon
\Omega\nu+1
,0)=\psi(\varepsilon
\Omega\nu+1

)for0<\nu\le\omega.

Fundamental sequences and normal form for Buchholz's function

Normal form

The normal form for 0 is 0. If

\alpha

is a nonzero ordinal number

\alpha<\Omega\omega

then the normal form for

\alpha

is
\alpha=\psi
\nu1

(\beta1)+\psi

\nu2

(\beta2)+ … +\psi

\nuk

(\betak)

where

\nui\inN0,k\inN>0,\betai\in

C
\nui

(\betai)

and
\psi
\nu1

(\beta1)\geq\psi

\nu2

(\beta2)\geq\geq\psi

\nuk

(\betak)

and each

\betai

is also written in normal form.

Fundamental sequences

The fundamental sequence for an ordinal number

\alpha

with cofinality

\operatorname{cof}(\alpha)=\beta

is a strictly increasing sequence

(\alpha[η])η<\beta

with length

\beta

and with limit

\alpha

, where

\alpha[η]

is the

η

-th element of this sequence. If

\alpha

is a successor ordinal then

\operatorname{cof}(\alpha)=1

and the fundamental sequence has only one element

\alpha[0]=\alpha-1

. If

\alpha

is a limit ordinal then

\operatorname{cof}(\alpha)\in\{\omega\}\cup\{\Omega\mu+1\mid\mu\geq0\}

.

For nonzero ordinals

\alpha<\Omega\omega

, written in normal form, fundamental sequences are defined as follows:
  1. If
\alpha=\psi
\nu1

(\beta1)+\psi

\nu2

(\beta2)+ … +\psi

\nuk

(\betak)

where

k\geq2

then
\operatorname{cof}(\alpha)=\operatorname{cof}(\psi
\nuk

(\betak))

and
\alpha[η]=\psi
\nu1

(\beta1)+ … +\psi

\nuk-1

(\betak-1

)+(\psi
\nuk

(\betak)[η]),

  1. If

\alpha=\psi0(0)=1

, then

\operatorname{cof}(\alpha)=1

and

\alpha[0]=0

,
  1. If

\alpha=\psi\nu+1(0)

, then

\operatorname{cof}(\alpha)=\Omega\nu+1

and

\alpha[η]=\Omega\nu+1[η]

,
  1. If

\alpha=\psi\nu(\beta+1)

then

\operatorname{cof}(\alpha)=\omega

and

\alpha[η]=\psi\nu(\beta)η

(and note:

\psi\nu(0)=\Omega\nu

),
  1. If

\alpha=\psi\nu(\beta)

and

\operatorname{cof}(\beta)\in\{\omega\}\cup\{\Omega\mu+1\mid\mu<\nu\}

then

\operatorname{cof}(\alpha)=\operatorname{cof}(\beta)

and

\alpha[η]=\psi\nu(\beta[η])

,
  1. If

\alpha=\psi\nu(\beta)

and

\operatorname{cof}(\beta)\in\{\Omega\mu+1\mid\mu\geq\nu\}

then

\operatorname{cof}(\alpha)=\omega

and

\alpha[η]=\psi\nu(\beta[\gamma[η]])

where

\left\{\begin{array}{lcr}\gamma[0]=\Omega\mu\\gamma[η+1]=\psi\mu(\beta[\gamma[η]])\\end{array}\right.

.

Explanation

Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal

\alpha

is equal to set

\{\beta\mid\beta<\alpha\}

. Then condition
0(\alpha)=\Omega
C
\nu
means that set
0(\alpha)
C
\nu
includes all ordinals less than

\Omega\nu

in other words
0(\alpha)=\{\beta\mid\beta<\Omega
C
\nu\}
.

The condition

n+1
C
\nu

(\alpha)=

n(\alpha)
C
\nu

\cup\{\gamma\midP(\gamma)\subseteq

n(\alpha)\}
C
\nu

\cup\{\psi\mu(\xi)\mid\xi\in\alpha\cap

n(\alpha)
C
\nu

\wedge\mu\leq\omega\}

means that set
n+1
C
\nu

(\alpha)

includes:
n(\alpha)
C
\nu
,
n(\alpha)
C
\nu
,

\alpha

from the previous set
n(\alpha)
C
\nu
as arguments of functions

\psi\mu

, where

\mu\le\omega

.

That is why we can rewrite this condition as:

n+1
C
\nu

(\alpha)=\{\beta+\gamma,\psi\mu(η)\mid\beta,\gamma,η\in

n(\alpha)\wedgeη<\alpha
C
\nu

\wedge\mu\leq\omega\}.

Thus union of all sets

n
C
\nu

(\alpha)

with

n<\omega

i.e.

C\nu(\alpha)=cupn

n
C
\nu

(\alpha)

denotes the set of all ordinals which can be generated from ordinals

<\aleph\nu

by the functions + (addition) and

\psi\mu(η)

, where

\mu\le\omega

and

η<\alpha

.

Then

\psi\nu(\alpha)=min\{\gamma\mid\gamma\not\inC\nu(\alpha)\}

is the smallest ordinal that does not belong to this set.

Examples

Consider the following examples:

0(\alpha)=\{0\}
C
0

=\{\beta\mid\beta<1\},

C0(0)=\{0\}

(since no functions

\psi(η<0)

and 0 + 0 = 0).

Then

\psi0(0)=1

.

C0(1)

includes

\psi0(0)=1

and all possible sums of natural numbers and therefore

\psi0(1)=\omega

– first transfinite ordinal, which is greater than all natural numbers by its definition.

C0(2)

includes

\psi0(0)=1,\psi0(1)=\omega

and all possible sums of them and therefore
2
\psi
0(2)=\omega
.

If

\alpha=\omega

then
2,\ldots,\psi(3)=\omega
C
0(\alpha)=\{0,\psi(0)=1,\ldots,\psi(1)=\omega,\ldots,\psi(2)=\omega

3,\ldots\}

and
\omega
\psi
0(\omega)=\omega
.

If

\alpha=\Omega

then

C0(\alpha)=\{0,\psi(0)=1,\ldots,\psi(1)=\omega,\ldots,\psi(\omega)=\omega\omega,\ldots,\psi(\omega\omega)=

\omega\omega
\omega

,\ldots\}

and

\psi0(\Omega)=\varepsilon0

– the smallest epsilon number i.e. first fixed point of

\alpha=\omega\alpha

.

If

\alpha=\Omega+1

then

C0(\alpha)=\{0,1,\ldots,\psi0(\Omega)=\varepsilon0,\ldots,\varepsilon0+\varepsilon0,\ldots,\psi1(0)=\Omega,\ldots\}

and

\psi0(\Omega+1)=\varepsilon

\varepsilon0+1
0\omega=\omega
.

\psi0(\Omega2)=\varepsilon1

the second epsilon number,
2)
\psi
0(\Omega

=

\varepsilon
\varepsilon

=\zeta0

i.e. first fixed point of

\alpha=\varepsilon\alpha

,
\alpha(1+\beta))
\varphi(\alpha,\beta)=\psi
0(\Omega
, where

\varphi

denotes the Veblen function,
\Omega)=\Gamma
\psi
0=\varphi(1,0,0)=\theta(\Omega,0)
, where

\theta

denotes the Feferman's function and

\Gamma0

is the Feferman–Schütte ordinal,
\Omega2
\psi
0(\Omega

)=\varphi(1,0,0,0)

is the Ackermann ordinal,
\Omega\omega
\psi
0(\Omega

)

is the small Veblen ordinal,
\Omega\Omega
\psi
0(\Omega

)

is the large Veblen ordinal,

\psi0(\Omega\uparrow\uparrow\omega)=\psi0(\varepsilon\Omega+1)=\theta(\varepsilon\Omega+1,0).

Now let's research how

\psi1

works:
0(0)=\{\beta\mid\beta<\Omega
C
1\}=\{0,\psi(0)

=1,2,\ldotsgoogol,\ldots,\psi0(1)=\omega,\ldots,\psi0(\Omega)=\varepsilon0,\ldots

\Omega\Omega+\Omega2
\ldots,\psi
0,\ldots,\psi(\Omega

),\ldots\}

i.e. includes all countable ordinals. And therefore

C1(0)

includes all possible sums of all countable ordinals and

\psi1(0)=\Omega1

first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality

\aleph1

.

If

\alpha=1

then

C1(\alpha)=\{0,\ldots,\psi0(0)=\omega,\ldots,\psi1(0)=\Omega,\ldots,\Omega+\omega,\ldots,\Omega+\Omega,\ldots\}

and
\Omega+1
\psi
1(1)=\Omega\omega=\omega
.
2=\omega
\psi
1(2)=\Omega\omega

\Omega+2,

\psi1(\psi1(0))=\psi

2=\omega
1(\Omega)=\Omega

\Omega+\Omega,

\psi1(\psi1(\psi1(0)))

\Omega+\omega\Omega+\Omega
=\omega

=\omega\Omega\Omega=(\omega\Omega)\Omega=\Omega\Omega,

4(0)=\Omega
\psi
1
\Omega\Omega

,

k+1
\psi
1

(0)=\Omega\uparrow\uparrowk

where

k

is a natural number,

k\geq2

,

\psi1(\Omega2)=

\omega(0)
\psi
1

=\Omega\uparrow\uparrow\omega=\varepsilon\Omega+1.

For case

\psi(\psi2(0))=\psi(\Omega2)

the set

C0(\Omega2)

includes functions

\psi0

with all arguments less than

\Omega2

i.e. such arguments as

0,\psi1(0),\psi1(\psi1(0)),

3(0),\ldots,
\psi
1
\omega(0)
\psi
1

and then

\psi0(\Omega2)=\psi0(\psi1(\Omega2))=\psi0(\varepsilon\Omega+1).

In the general case:

\psi0(\Omega\nu+1)=\psi0(\psi\nu(\Omega\nu+1))=\psi0(\varepsilon

\Omega\nu+1

)=

\theta(\varepsilon
\Omega\nu+1

,0).

We also can write:

\theta(\Omega\nu,0)=\psi0(\Omega

\Omega)
\nu

(for1\le\nu)<\omega

Ordinal notation

(OT,<)

associated to the

\psi

function. We simultaneously define the sets

T

and

PT

as formal strings consisting of

0,Dv

indexed by

v\in\omega+1

, braces and commas in the following way:

0\inT0\inPT

,

\forall(v,a)\in(\omega+1) x T(Dva\inTDva\inPT)

.

\forall(a0,a1)\in

2((a
PT
0,

a1)\inT)

.

\existss(a0=s)(a0,a1)\inT x PT(s,a1)\inT

.

An element of

T

is called a term, and an element of

PT

is called a principal term. By definition,

T

is a recursive set and

PT

is a recursive subset of

T

. Every term is either

0

, a principal term or a braced array of principal terms of length

\geq2

. We denote

a\inPT

by

(a)

. By convention, every term can be uniquely expressed as either

0

or a braced, non-empty array of principal terms. Since clauses 3 and 4 in the definition of

T

and

PT

are applicable only to arrays of length

\geq2

, this convention does not cause serious ambiguity.

a<b

on

T

in the following way:

b=0a<b=\bot

a=0(a<b\leftrightarrowb0)

a0b0

, then:

a=Dua'b=Dvb'

for some

((u,a'),(v,b'))\in((\omega+1) x T)2

, then

a<b

is true if either of the following are true:

u<v

u=va'<b'

a=(a0,...,an)b=(b0,...,bm)

for some

(n,m)\in\N21\leqn+m

, then

a<b

is true if either of the following are true:

\foralli\in\Ni\leqn(n<mai=bi)

\existsk\in\N\foralli\in\Ni<k(k\leqmin\{n,m\}ak<bkai=b1)

<

is a recursive strict total ordering on

T

. We abbreviate

(a<b)\or(a=b)

as

a\leqb

. Although

\leq

itself is not a well-ordering, its restriction to a recursive subset

OT\subsetT

, which will be described later, forms a well-ordering. In order to define

OT

, we define a subset

Gua\subsetT

for each

(u,a)\in(\omega+1) x T

in the following way:

a=0Gua=\varnothing

a=Dva'

for some

(v,a')\in(\omega+1) x T

, then:

u\leqvGua=\{a'\}\cupGua'

u>vGua=\varnothing

a=(a0,...,ak)

for some

(ai)

k
i=0

\inPTk

for some

k\in\N\backslash\{0\},Gua=

k
cup
i=0

Guai

.

b\inGua

is a recursive relation on

(u,a,b)\in(\omega+1) x T2

. Finally, we define a subset

OT\subsetT

in the following way:

0\inOT

(v,a)\in(\omega+1) x T

,

Dva\inOT

is equivalent to

a\inOT

and, for any

a'\inGva

,

a'<a

.

(ai)

k
i=0

\inPTk

,

(a0,...,ak)\inOT

is equivalent to

(ai)

k
i=0

\inOT

and

ak\leq...\leqa0

.

OT

is a recursive subset of

T

, and an element of

OT

is called an ordinal term. We can then define a map

o:OTC0(\varepsilon

\Omega\omega+1

)

in the following way:

a=0o(a)=0

a=Dva'

for some

(v,a')\in(\omega+1) x OT

, then

o(a)=\psiv(o(a'))

.

a=(a0,...,ak)

for some

(ai)

k
i=0

\in(OT\capPT)k+1

with

k\in\N\backslash\{0\}

, then

o(a)=o(a0)\#...\#o(ak)

, where

\#

denotes the descending sum of ordinals, which coincides with the usual addition by the definition of

OT

.

Buchholz verified the following properties of

o

:

o

is an order-preserving bijective map with respect to

<

and

\in

. In particular,

o

is a recursive strict well-ordering on

OT

.

a\inOT

satisfying

a<D10

,

o(a)

coincides with the ordinal type of

<

restricted to the countable subset

\{x\inOT|x<a\}

.

<

restricted to the recursive subset

\{x\inOT|x<D10\}

.

(OT,<)

is greater than the Takeuti-Feferman-Buchholz ordinal.

v\in\N\backslash\{0\}

, the well-foundedness of

<

restricted to the recursive subset

\{x\inOT|x<D0Dv+10\}

in the sense of the non-existence of a primitive recursive infinite descending sequence is not provable under

IDv

.

<

restricted to the recursive subset

\{x\inOT|x<D0D\omega0\}

in the same sense as above is not provable under
1
\Pi
1

-CA0

.

Normal form

The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by

o

. Namely, the set

NF

of predicates on ordinals in

C0(\varepsilon

\Omega\omega+1

)

is defined in the following way:

\alpha=NF0

on an ordinal

\alpha\inC0(\varepsilon

\Omega\omega+1

)

defined as

\alpha=0

belongs to

NF

.

\alpha0=NF

\psi
k1

(\alpha1)

 on ordinals

\alpha0,\alpha1\inC0(\varepsilon

\Omega\omega+1

)

 with

k1=\omega+1

 defined as

\alpha0=

\psi
k1

(\alpha1)

 and

\alpha1=

C
k1

(\alpha1)

 belongs to

NF

.

\alpha0=NF\alpha1+...+\alphan

on ordinals

\alpha0,\alpha1,...,\alphan\inC0(\varepsilon

\Omega\omega+1

)

 with an integer

n>1

 defined as

\alpha0=\alpha1+...+\alphan

,

\alpha1\geq...\geq\alphan

, and

\alpha1,...,\alphan\inAP

 belongs to

NF

. Here

+

 is a function symbol rather than an actual addition, and

AP

 denotes the class of additive principal numbers.

It is also useful to replace the third case by the following one obtained by combining the second condition:

\alpha0=NF

\psi
k1

(\alpha1)+...+

\psi
kn

(\alphan)

on ordinals

\alpha0,\alpha1,...,\alphan\inC0(\varepsilon

\Omega\omega+1

)

 with an integer

n>1

 and

k1,...,kn\in\omega+1

defined as

\alpha0=

\psi
k1

(\alpha1)+...+

\psi
kn

(\alphan)

,
\psi
k1

(\alpha1)\geq...\geq

\psi
kn

(\alphan)

, and

\alpha1\in

C
k1

(\alpha1),...,\alphan\in

C
kn

(\alphan)\inAP

 belongs to

NF

.

We note that those two formulations are not equivalent. For example,

\psi0(\Omega)+1=NF\psi0(\zeta1)+\psi0(0)

 is a valid formula which is false with respect to the second formulation because of

\zeta1C0(\zeta1)

, while it is a valid formula which is true with respect to the first formulation because of

\psi0(\Omega)+1=\psi0(\zeta1)+\psi0(0)

,

\psi0(\zeta1),\psi0(0)\inAP

, and

\psi0(\zeta1)\geq\psi0(0)

. In this way, the notion of normal form heavily depends on the context. In both formulations, every ordinal in

C0(\varepsilon

\Omega\omega+1

)

 can be uniquely expressed in normal form for Buchholz's function.

References

  1. G. Jäger. ρ-inaccessible ordinals, collapsing functions and a recursive notation system. Archiv für Mathematische Logik und Grundlagenforschung. 24. 1. 1984. 49–62. 10.1007/BF02007140. 38619369.
  2. W.. Buchholz. Schütte. K.. Ein Ordinalzahlensystem ftir die beweistheoretische Abgrenzung der H~-Separation und Bar-Induktion. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse. 1983.
  3. Buchholz . W. . 1986 . A new system of proof-theoretic ordinal functions . Annals of Pure and Applied Logic . en . 32 . 195–207 . 10.1016/0168-0072(86)90052-7. free .