In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories
ID\nu
The formal theory IDω (and IDν in general) is an extension of Peano Arithmetic, formulated in the language LID, by the following axioms:[1]
\forally\forallx
ak{M} | |
(ak{M} | |
y, |
x) → x\in
ak{M} | |
P | |
y) |
\forally(\forallx(ak{M}y(F,x) → F(x)) → \forallx(x\in
ak{M} | |
P | |
y |
→ F(x)))
\forally\forallx0\forall
ak{M} | |
x | |
<y |
x0x1\leftrightarrowx0<y\landx1\in
ak{M} | |
P | |
x0 |
)
The theory IDν with ν ≠ ω is defined as:
\forally\forallx
ak{M} | |
(Z | |
y, |
x) → x\in
ak{M} | |
P | |
y) |
\forallx(ak{M}u(F,x) → F(x)) → \forallx
ak{M} | |
(P | |
ux |
→ F(x))
\forally\forallx0\forall
ak{M} | |
x | |
<y |
x0x1\leftrightarrowx0<y\landx1\in
ak{M} | |
P | |
x0 |
)
A set
I\subseteq\N
\Gamma:P(N) → P(N)
LFP(\Gamma)=I
LFP(f)
f
L | |
ID1 |
L\N
F(x)=\{x\inN\midF(x)\}
s\inF
F(s)
F
G
F\subseteqG
\forallxF(x) → G(x)
Then ID1 contains the axioms of first-order number theory (PA) with the induction scheme extended to the new language as well as these axioms:
1: | |
(ID | |
1) |
A(IA)\subseteqIA
2: | |
(ID | |
1) |
A(F)\subseteqF → IA\subseteqF
Where
F(x)
L | |
ID1 |
Note that
1 | |
(ID | |
1) |
IA
\GammaA(S)=\{x\in\N\mid\N\modelsA(S,x)\}
2 | |
(ID | |
1) |
IA
L | |
ID1 |
Thus,
IA
\GammaA
To define the system of ν-times iterated inductive definitions, where ν is an ordinal, let
\prec
\prec
L | |
ID\nu |
L\N
L\N[X,Y]
A(X,Y,\mu,x)
x\in
\mu | |
J | |
A |
JA(\mu,x)
The system IDν is now obtained from the system of first-order number theory (PA) by expanding the induction scheme to the new language and adding the scheme
(TI\nu):TI(\prec,F)
\prec
L | |
ID\nu |
F
1: | |
(ID | |
\nu) |
\forall\mu\prec\nu;A\mu(J
\mu | |
A) |
\subseteq
\mu | |
J | |
A |
2: | |
(ID | |
\nu) |
\forall\mu\prec\nu;A\mu(F)\subseteqF →
\mu | |
J | |
A |
\subseteqF
where
F(x)
L | |
ID\nu |
1 | |
(ID | |
\nu) |
2 | |
(ID | |
\nu) |
A\mu(F)
A(F,(λ\gammay;\gamma\prec\mu\landy\in
\gamma | |
J | |
A), |
\mu,x)
x
\mu | |
J | |
A |
\mu\prec\nu
\mu | |
\Gamma | |
A(S) |
=\{n\in\N|(\N,
\gamma | |
(J | |
A) |
\gamma\}
\gamma | |
J | |
A |
\gamma\prec\mu
We then define .
\widehat{ID
\widehat{ID
ID\nu
\widehat{ID
I\subseteq\N
\Gamma:P(N) → P(N)
I
\Gamma
PTO(\widehat{ID
PTO(ID1)=\psi(\varepsilon\Omega+1)
ID\nu\#
\widehat{ID
ID\nu\#
PTO(ID1\#)=\psi(\Omega\omega)
PTO(\widehat{ID
W-ID\nu
ID\nu
PTO(W-ID1)=\psi0(\Omega x \omega)
PTO(ID1)=\psi(\varepsilon\Omega+1)
U(ID\nu)
ID\nu
\varepsilon0
\Gamma0
PTO(ID1)=\psi(\varepsilon\Omega+1)
PTO(U(ID1))=\psi(\Gamma\Omega+1)
1 | |
\Pi | |
1 |
-CA+BI
0 | |
\Pi | |
2 |
\forallx\existsy\varphi(x,y)(\varphi\in
0 | |
\Sigma | |
1) |
p\inN
\foralln\geqp\existsk<
H | |||||||
|
(1)\varphi(n,k)
| |||||||
\vdash | |||||||
k |
AN
\psi0(\Omega\nu)
\psi0(\varepsilon
\Omega\nu+1 |
)=\psi0(\Omega\nu+1)
\widehat{ID}<\omega
\Gamma0
\widehat{ID}\nu
\nu<\omega
\varphi(\varphi(\nu,0),0)
\widehat{ID}\varphi(\alpha,
\varphi(1,0,\varphi(\alpha+1,\beta-1))
\widehat{ID}<\varphi(0,
\alpha>1
\varphi(1,\alpha,0)
\widehat{ID}<\nu
\nu\geq\varepsilon0
\varphi(1,\nu,0)
ID\nu\#
\varphi(\omega\nu,0)
ID<\nu\#
\varphi(0,\omega\nu+1)
Wrm{-}ID\varphi(\alpha,
\psi0(\Omega\varphi(\alpha, x \varphi(\alpha+1,\beta-1))
Wrm{-}ID<\varphi(\alpha,
\psi0(\varphi(\alpha+1,
\Omega\varphi(\alpha,+1 | |
\beta-1) |
)
U(ID\nu)
\psi0(\varphi(\nu,0,\Omega+1))
U(ID<\nu)
\Omega+\varphi(\nu,0,\Omega) | |
\psi | |
0(\Omega |
)
KP
KP\omega
CZF
ML1V |
\psi0(\Omega\omega\varepsilon0)
W-KPI
KPI
1 | |
\Pi | |
1 |
-CA+BI
1 | |
\Delta | |
2 |
-CA+BI
\psi0(\Omega
\omega\omega |
)
1 | |
\Delta | |
2 |
-CR
\psi0(\Omega
\varepsilon0 |
)
1 | |
\Delta | |
2 |
-CA
1 | |
\Sigma | |
2 |
-AC
1 | |
\Pi | |
1 |
-CA+BI
1 | |
\Sigma | |
2 |
-AC