Bruno Reversade Explained

Bruno REVERSADE
Citizenship:French / American
Nationality:French
Fields:Mendelian Genetics, Developmental biology, Micropeptides, Hormones
Workplaces:National University of SingaporeKAUST
Alma Mater:University of California, Los Angeles[1]
Thesis1 Title:and
Thesis2 Title:)-->
Thesis1 Url:and
Thesis2 Url:)-->
Thesis1 Year:and
Thesis2 Year:)-->
Doctoral Advisor:Edward M. De Robertis
Academic Advisors:Davor Solter
Awards:Society-in-Science, Branco Weiss Fellow (2007), A*STAR Investigator (2008), EMBO Young Investigators (2012), National Research Foundation (2019)
Spouses:)-->
Partners:)-->
Children:>2

Bruno Reversade (born 1978) is an American human geneticist and developmental biologist . He is a Director of the Institute of Molecular and Cellular Biology and the Genome Institute of Singapore at A*STAR (Singapore) and holds several faculty positions at other universities. Reversade is known for identifying mutated genes that cause Mendelian diseases, for his research on the genetics of identical twins and for the characterizations of novel hormones.[2] [3] [4]

Early life and education

Bruno Reversade was born in 1974 into a French-American family. He was raised in Grenoble (France) and Washington, D.C. (US). Bruno Reversade studied at the University Joseph Fourier, Pierre and Marie Curie University and UCLA.

Scientific career

Reversade became interested in developmental biology in 1997 when studying at the University of Western Ontario (Canada) under the tutelage of Greg Kelly.[5] [6]

He earned his master's degree at the Pasteur Institute (Paris, France), where he studied head development in the mouse embryo.[7] He then moved to the United States to work at the HHMI laboratory of Edward M. De Robertis at the University of California, Los Angeles. There he studied the specification of the dorsal-ventral axis during vertebrate development using Xenopus embryos.[8] In 2005, Reversade and De Robertis detailed how multiple extracellular proteins allow embryos that are cut in two to self-regulate consistently.[9] [10] [11]

In 2006, Reversade earned his PhD from the Pierre and Marie Curie University.[12] In 2008, he received the A*STAR investigatorship (Singapore) award and set up his team in 2008 at the Institute of Medical Biology to carry out human embryology and genetic research.[13] In 2015, he became a Director at A*STAR.[14] Also in 2015, he received AAA Fellowship from the Vrije Universiteit Amsterdam and was appointed Professor of Human Genetics at the Centre for Reproductive Medicine at the university's Academic Medical Center.[15] Since 2016, Reversade is a Distinguished Professor of Human Genetics at Koç University (Turkey).[16] In 2023, Reversade became a Smart-Health Initiative Director and Professor at KAUST in the Kingdom of Saudi Arabia.

Research areas

Mendelian genetics

Reversade's team works on the genetic characterization and clinical description of inherited conditions in humans.[17] [18]

They have identified mutations responsible for progeroid syndromes in humans,[19] NLRP1 inflammasome-related diseases,[20] [21] self-healing cancers and numerous diseases causing birth defects

Reversade's group has identified the following genes to be responsible for novel Mendelian diseases:

YearGeneInheritanceMendelian diseasePhenotype MIM number
2009PYCR1RecessiveCutis laxa, autosomal recessive, type IIB (wrinkly skin syndrome)[22] [23] 614438
2010CHSY1RecessiveTemtamy preaxial brachydactyly syndrome[24] 605282
2011TGFBR1DominantMultiple Self-healing Squamous Epithelioma (Fergurson-Smith disease)[25] 132800
2012IRX5RecessiveHamamy syndrome[26] [27] 611174
2012AAGABRecessivePunctate palmoplantar keratoderma, type IA[28] 148600
2014KATNB1RecessiveLissencephaly with Microcephaly 6[29] 616212
2015DCPSRecessiveAl-Raqad syndrome[30] 616459
2015ALDH18A1DominantDominant Cutis laxa type 3[31] 616603
2016NLRP1DominantMultiple self-healing palmoplantar carcinoma[32] [33] 615225
2016NLRP1Recessivefamilial keratosis lichenoides chronica (FKLC)615225
2016USP9XHeterozygousX-linked syndromic mental retardation 99[34] 300968
2016ELMO2RecessivePrimary intraosseous vascular malformation[35] 606893
2017ENPP1RecessiveCole disease[36] 615522
2017CDK10RecessiveAl Kaissi syndrome[37] 617694
2017LGI4RecessiveNeurogenic Arthrogryposis multiplex congenita with myelin defect[38] 617468
2017KIAA1109RecessiveAlkuraya-Kucinskas syndrome[39] 617822
2017SMCHD1DominantBosma arhinia microphthalmia syndrome[40] 603457
2018CAMK2ARecessiveMental retardation, autosomal recessive 63[41] [42] 618095
2018RSPO2RecessiveTetraamelia syndrome with pulmonary agenesis[43] [44] [45] 618021
2019TBX4RecessivePAPPA syndrome[46] 601719
2019NLRP1RecessiveCongenital juvenile recurrent respiratory papillomatosis (JRRP)[47] 618803
2020UGDHRecessiveJamuar Syndrome[48] 603370
2020MTX2RecessiveMandibuloacral dysplasia progeroid syndrome619127
2020NUAK2RecessiveAnencephaly 2[49] 619452
2021C2orf69RecessiveElbracht-Işikay Syndrome[50] 619423
2021WLSRecessiveZaki Syndrome[51] 619648
2021CIROPRecessiveVisceral heterotaxy-12 (HTX12)[52] [53] 619702
2022DPP9RecessiveHatipoğlu syndrome[54] 608258
2022FOCADRecessiveSevere Liver congenital disease[55] 619991
2022TMEM147RecessiveNeurodevelopmental disorder with facial dysmorphism & absent language[56] 620075
2023TAPT1RecessiveLethal Osteochondrodysplasia[57] 616897
2023DRG1RecessiveNeurodevelopmental disorder[58] 603952
2023RAF1RecessiveProgeroid disease [59] 164760

Developmental biology and Twinning

Reversade's investigations in developmental biology have relied on various animal model organisms (C. elegans, Drosophila, zebrafish, Xenopus and transgenic mice) and covered such embryonic processes as neural induction, limb development, and various human diseases causing birth defects.[49] [51]

In 2005, during his Ph.D. thesis in the laboratory of Edward De Robertis, the scientists published two discoveries,[60] pertaining to the self-regulation of an embryonic morphogenetic field mediated by the extracellular Chordin/BMP/Sizzled pathway. This helped provide a molecular framework for how embryos split in two halves can develop into perfect, albeit smaller, identical twinned embryos.[61]

Reversade also researches the genetics of dizygotic and monozygotic twinning in humans.[62] He has been searching for genes responsible for monozygotic (MZ) twinning from rare population isolates.[63]

In 2021, together with the VU Amsterdam, his group revealed that MZ twins harbor an epigenetic signature in their somatic tissue even decades after their birth.[64] This stable DNA mark could be employed to retrospectively assess if a person is a MZ twin even if his/her co-twin vanished in utero.[65]

Hormones and Micropeptides

Reversade's research has also pioneered the annotation of novel micropeptides.[66]

Awards and recognition

External links

Notes and References

  1. News: Out of one, many. The Economist. J.P.. Singapore. 2011-01-12. https://archive.today/20191206212805/https://www.economist.com/babbage/2011/01/12/out-of-one-many. 2019-12-06. 2019-12-06.
  2. Book: Segal, Nancy L.. Twin Mythconceptions: False Beliefs, Fables, and Facts about Twins. 54. Academic Press. 2017. 978-0-12-803994-6. Google Books.
  3. Book: Epigenomics: From Chromatin Biology to Therapeutics. 16. Appasani. Krishnarao. Cambridge University Press. 2012. 978-1-107-00382-8. Google Books.
  4. News: Sur la piste d'un gène responsable de la gémellité. On the trail of a gene responsible for twinning. French. Le Monde. Rosier. Florence. 8 July 2014. https://web.archive.org/web/20140708232451/https://www.lemonde.fr/sciences/article/2014/07/08/sur-la-piste-d-un-gene-responsable-de-la-gemellite_4452681_1650684.html. 2014-07-08. 2019-12-16.
  5. Turning point: Bruno Reversade. Gewin. Virginia. 495. 7441. 401. 2013-03-21. Nature. 10.1038/nj7441-401a. free.
  6. Characterization of a cDNA encoding a novel band 4.1-like protein in zebrafish. Kelly. Gregory M. Reversade. Bruno. Biochemistry and Cell Biology. 1997. 75. 5. 623–632. 10.1139/o97-078. 9551184.
  7. Gene expression profiles in normal and Otx2−/− early gastrulating mouse embryos. Proceedings of the National Academy of Sciences of the United States of America. Zakin. Lise. Reversade. Bruno. Virlon. Bérangère. Rusniok. Christophe. Glaser. Philippe. Elalouf. Jean-Marc. Brûlet. Philippe. 2000-12-19. 97. 26. 14388–14393. 10.1073/pnas.011513398. 11114168. 18928. 2000PNAS...9714388Z. free.
  8. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development. Reversade. B.. Kuroda. H.. Lee. H.. Mays. A.. De Robertis. E.M.. 2005-06-23. 132. 15. 3381–92. 15975940. 2278118. 10.1242/dev.01901.
  9. Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field. Reversade. Bruno. De Robertis. E.M.. Cell. 123. 6. 2005-12-16. 1147–1160. 10.1016/j.cell.2005.08.047. 16360041. 2292129.
  10. Web site: Researchers Discover Remarkable Developmental Pathway. Keeley. Jim. Howard Hughes Medical Institute. 2005-12-16. https://web.archive.org/web/20170925204258/http://www.hhmi.org/news/researchers-discover-remarkable-developmental-pathway. 2017-09-25. 2019-12-07.
  11. Book: Old Questions and Young Approaches to Animal Evolution. 98. Martín-Durán. José M.. Vellutini. Bruno C.. Springer Nature. 2019. 2509-6745. 978-3-030-18201-4. Google Books.
  12. Prestigious A*STAR Investigatorship award attracts outstanding young scientists to carry out independent research at A*STAR Research Institutes. Agency for Science, Technology and Research. 2008-02-12. https://web.archive.org/web/20191207201128/https://www.asiaone.com/health/genetic-studies-wins-astar-scientist-place-elite-group. 2019-12-07. 2019-12-07.
  13. News: Genetic studies wins A*Star scientist place in elite group. The Straits Times. 8. Zengkung. Feng. 2012-11-20. AsiaOne. https://web.archive.org/web/20191207201128/https://www.asiaone.com/health/genetic-studies-wins-astar-scientist-place-elite-group. 2019-12-07. 2019-12-07.
  14. Web site: Bruno Reversade. ResearchGate. https://web.archive.org/web/20191210194627/https://www.researchgate.net/profile/Bruno_Reversade. 2019-12-10. 2019-12-10.
  15. Web site: Vrije Universiteit Amsterdam Annual Report 2015. 56. Vrije Universiteit Amsterdam. 2015. https://web.archive.org/web/20191207215354/https://www.vu.nl/en/Images/Annual_report_2015_tcm270-793729.pdf. 2019-12-07. 2019-12-07.
  16. Web site: Akademik Kadro. Academic staff. Turkish. Koç University. https://web.archive.org/web/20191210201406/https://medicine.ku.edu.tr/kadromuz/akademik-kadro/. 2019-12-10. 2019-12-10.
  17. News: Tracking mutated genes that wreak havoc. Cheong. Kash. The Straits Times. 2015-09-18. https://web.archive.org/web/20150919002934/https://www.straitstimes.com/singapore/health/tracking-mutated-genes-that-wreak-havoc. 2015-09-19. 2019-12-10.
  18. Web site: Asia's Scientific Trailblazers: Bruno Reversade. Asian Scientist. Chng. Leonard. 2015-10-29. https://web.archive.org/web/20151030173025/https://www.asianscientist.com/2015/10/features/asias-scientific-trailblazers-bruno-reversade/. 2015-10-30. 2019-12-10.
  19. Elouej. Sahar. Harhouri. Karim. Mao. Morgane Le. Baujat. Genevieve. Nampoothiri. Sheela. Kayserili. Hϋlya. Menabawy. Nihal Al. Selim. Laila. Paneque. Arianne Llamos. Kubisch. Christian. Lessel. Davor. 2020-10-19. Author Correction: Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nature Communications. 11. 1. 5349. 10.1038/s41467-020-19290-y. 2041-1723. 7572408. 33077719.
  20. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. etal. Zhonga. Franklin L.. Robinson. Kim. Teo. Daniel Eng Thiam. Journal of Biological Chemistry. 2018-10-05. 293. 49. 18864–18878. 10.1074/jbc.RA118.004350. 30291141. 6295727. free.
  21. Harapas . Cassandra R. . Robinson . Kim S. . Lay . Kenneth . Wong . Jasmine . Traspas . Ricardo Moreno . Nabavizadeh . Nasrin . Raas-Rothschild . Annick . Boisson . Bertrand . Drutman . Scott B. . Laohamonthonkul . Pawat . Bonner . Devon . 2021-06-09 . DPP9 deficiency: an Inflammasomopathy which can be rescued by lowering NLRP1/IL-1 signaling . en . 10.1101/2021.01.31.21250067v2.
  22. Mutations in PYCR1 cause cutis laxa with progeroid features. etal. Reversade. B.. Escande-Beillard. N.. Dimopoulou. A.. Nature Genetics. 41. 9. 1016–1021. 2009-08-02. 10.1038/ng.413. 19648921. 10221927.
  23. Web site: Scoperta la proteina che contrasta l'invecchiamento precoce della pelle. The protein that counteracts premature aging of the skin is discovered. Italian. la Repubblica. 2009-09-05. https://web.archive.org/web/20110209150203/http://www.repubblica.it/salute/medicina/2009/09/05/news/scoperta_la_proteina_che_contrasta_l_invecchiamento_precoce_della_pelle-5585170/. 2011-02-09. 2019-12-16.
  24. etal. Tian. J.. Jing. L.. Shboul. M.. American Journal of Human Genetics. 2010-12-10. 87. 6. 768–78. 10.1016/j.ajhg.2010.11.005. 21129727. 2997365.
  25. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1. Nature Genetics. 43. 4. 365–9. etal. Goudie. D.R.. Merriman. B.. Lee. B.. 2011-02-27. 21358634. 10.1038/ng.780. 24580576.
  26. Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. etal. Bonnard. Carine. Strobl. Anna C. Shboul. Mohammad. Nature Genetics. 13. 44. 2012-05-13. 709–713. 10.1038/ng.2259. 22581230. 5535474.
  27. News: Rare Hamamy syndrome offers genetic insight into what causes heart disease, blood disorders. New York Daily News. Goldwert. Lindsay. 2012-05-15. https://web.archive.org/web/20171012071753/http://www.nydailynews.com/life-style/health/rare-hamamy-syndrome-offers-genetic-insight-heart-disease-blood-disorders-article-1.1078089. 2017-10-12. 2019-12-14.
  28. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. etal. Pohler. Elizabeth. Mamai. Ons. Hirst. Jennifer. Nature Genetics. 2012-10-14. 44. 11. 1272–1276. 10.1038/ng.2444. 23064416. 3836166.
  29. etal. Hu. Wen F.. Pomp. Oz. Ben-Omran. Tawfeg. Neuron. 84. 6. 1240–1257. 2014-12-17. 10.1016/j.neuron.2014.12.017. 25521379. 4485387.
  30. etal. Ng. Calista K.L.. Shboul. Mohammad. Taverniti. Valerio. Human Molecular Genetics. 24. 11. 2015-06-01. 3163–3171. 10.1093/hmg/ddv067. 25712129. 4424953.
  31. etal. Fischer-Zirnsak. Björn. Escande-Beillard. Nathalie. Ganesh. Jaya. Callewaert. Bert. American Journal of Human Genetics. 97. 3. 483–492. 2015-09-03. 10.1016/j.ajhg.2015.08.001. 26320891. 4564990.
  32. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell. etal. Zhong. Franklin L.. Mamaï. Ons. Sborgi. Lorenzo. Saad. Ali. 167. 1. 187–202.E17. 2016-09-22. 10.1016/j.cell.2016.09.001. 27662089. free.
  33. News: Singapore team sheds light on what causes skin cancer. Boh. Samantha. The Straits Times. 2016-11-02. https://web.archive.org/web/20161102162430/https://www.straitstimes.com/singapore/health/spore-team-sheds-light-on-what-causes-skin-cancer. 2016-11-02. 2019-12-15.
  34. etal. Reijnders. Margot R.F.. Zachariadis. Vasilios. Latour. Brooke. American Journal of Human Genetics. 98. 2. 373–381. 2016-02-04. 10.1016/j.ajhg.2015.12.015. 26833328. 4746365.
  35. etal. Cetinkaya. Arda. Xiong. Jingwei Rachel. Vargel. İbrahim. American Journal of Human Genetics. 99. 2. 299–317. 2016-08-04. 10.1016/j.ajhg.2016.06.008. 27476657. 4974086.
  36. ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis. Journal of Investigative Dermatology. etal. Chourabi. Marwa. Liew. Mei Shan. Lim. Shawn. 2018-01-08. 138. 2. 291–300. 10.1016/j.jid.2017.08.045. 28964717. free.
  37. etal. Windpassinger. Christian. Piard. Juliette. Bonnard. Carine. American Journal of Human Genetics. 101. 3. 391–403. 2017-09-07. 10.1016/j.ajhg.2017.08.003. 28886341. 5591019.
  38. etal. Xue. Shifeng. Maluenda. Jérôme. Marguet. Florent. American Journal of Human Genetics. 100. 4. 659–665. 2017-04-06. 10.1016/j.ajhg.2017.02.006. 28318499. 5384038.
  39. etal. Gueneau. Lucie. Fish. Richard J.. Shamseldin. Hanan E.. American Journal of Human Genetics. 102. 1. 116–132. 2018-01-04. 10.1016/j.ajhg.2017.12.002. 29290337. 5777449.
  40. De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. etal. Gordon. Christopher T. Xue. Shifeng. Yigit. Gökhan. Nature Genetics. 49. 2. 249–255. 2017-01-09. 10.1038/ng.3765. 28067911. 205353193.
  41. A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. eLife. 7. etal. Chia. Poh Hui. Zhong. Franklin Lei. Niwa. Shinsuke. 2018-05-22. 10.7554/eLife.32451. 29784083. 5963920 . free .
  42. News: Researchers identify a new neurodevelopmental disease. Maynard. Christopher. ConsumerAffairs. 2018-05-23. https://web.archive.org/web/20180524002036/https://www.consumeraffairs.com/news/researchers-identify-a-new-neurodevelopmental-disease-052318.html. 2018-05-24. 2019-12-15.
  43. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature. etal. Szenker-Ravi. Emmanuelle. Altunoglu. Umut. Leushacke. Marc. 557. 7706. 564–569. 2018-05-16. 10.1038/s41586-018-0118-y. 29769720. 2018Natur.557..564S. 21712936.
  44. News: Geboren zonder armen en benen – nu weten we hoe dat komt. Born without arms and legs - now we know why. Dutch. NRC Handelsblad. Voormolen. Sander. 2018-05-17. https://web.archive.org/web/20191215185518/https://www.nrc.nl/nieuws/2018/05/17/mutatie-in-signaal-gen-verstoort-aanleg-ledematen-a1603338. 2019-12-15. 2019-12-15.
  45. Web site: Kopan kol ve bacak yeniden çıkabilir... Türk bilim kadınının büyük başarısı. The broken arm and leg can come out again ... The great success of the Turkish scientist. Turkish. Hürriyet. Ersan. Mesude. 2018-06-11. https://web.archive.org/web/20181112093107/http://www.hurriyet.com.tr/gundem/kopan-kol-ve-bacak-yeniden-cikabilir-turk-bilim-kadininin-buyuk-basarisi-40864900. 2018-11-12. 2019-12-15.
  46. etal. Kariminejad. Ariana. Szenker-Ravi. Emmanuelle. Lekszas. Caroline. American Journal of Human Genetics. 105. 6. 1294–1301. 2019-12-05. 10.1016/j.ajhg.2019.10.013. 31761294. 6904794.
  47. Drutman . Scott B. . Haerynck . Filomeen . Zhong . Franklin L. . Hum . David . Hernandez . Nicholas J. . Belkaya . Serkan . Rapaport . Franck . de Jong . Sarah Jill . Creytens . David . Tavernier . Simon J. . Bonte . Katrien . De Schepper . Sofie . van der Werff Ten Bosch . Jutte . Lorenzo-Diaz . Lazaro . Wullaert . Andy . 2019-09-17 . Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis . Proceedings of the National Academy of Sciences of the United States of America . 116 . 38 . 19055–19063 . 10.1073/pnas.1906184116 . 1091-6490 . 6754618 . 31484767. 2019PNAS..11619055D . free .
  48. Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy. etal. Hengel. Holger. Bosso-Lefèvre. Célia. Grady. George. Szenker-Ravi. Emmanuelle. Li. Hankun. Pierce. Sarah. Nature Communications. 11. 1. 595. January 30, 2020. 10.1038/s41467-020-14360-7. 32001716. 6992768. 2020NatCo..11..595H.
  49. Bonnard. Carine. Navaratnam. Naveenan. Ghosh. Kakaly. Chan. Puck Wee. Tan. Thong Teck. Pomp. Oz. Ng. Alvin Yu Jin. Tohari. Sumanty. Changede. Rishita. Carling. David. Venkatesh. Byrappa. 2020-12-07. A loss-of-function NUAK2 mutation in humans causes anencephaly due to impaired Hippo-YAP signaling. The Journal of Experimental Medicine. 217. 12. 10.1084/jem.20191561. 1540-9538. 7953732. 32845958.
  50. Wong. Hui Hui. Seet. Sze Hwee. Maier. Michael. Gurel. Ayse. Traspas. Ricardo Moreno. Lee. Cheryl. Zhang. Shan. Talim. Beril. Loh. Abigail Y. T.. Chia. Crystal Y.. Teoh. Tze Shin. 2021-05-21. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen storage-associated mitochondriopathy. American Journal of Human Genetics. 108. 7. 1301–1317. 10.1016/j.ajhg.2021.05.003. 1537-6605. 34038740. 8322802.
  51. Chai. Guoliang. Szenker-Ravi. Emmanuelle. Chung. Changuk. Li. Zhen. Wang. Lu. Khatoo. Muznah. Marshall. Trevor. Jiang. Nan. Yang. Xiaoxu. McEvoy-Venneri. Jennifer. Stanley. Valentina. 2021-09-30. A Human Pleiotropic Multiorgan Condition Caused by Deficient Wnt Secretion. The New England Journal of Medicine. 385. 14. 1292–1301. 10.1056/NEJMoa2033911. 1533-4406. 34587386. 9017221 . 238230084.
  52. Web site: Entry - #619702 - HETEROTAXY, VISCERAL, 12, AUTOSOMAL; HTX12 - OMIM . 2023-09-16 . www.omim.org . en-us.
  53. Szenker-Ravi . Emmanuelle . Ott . Tim . Khatoo . Muznah . Moreau de Bellaing . Anne . Goh . Wei Xuan . Chong . Yan Ling . Beckers . Anja . Kannesan . Darshini . Louvel . Guillaume . Anujan . Priyanka . Ravi . Vydianathan . Bonnard . Carine . Moutton . Sébastien . Schoen . Patric . Fradin . Mélanie . January 2022 . Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates . Nature Genetics . en . 54 . 1 . 62–72 . 10.1038/s41588-021-00970-4 . 34903892 . 245171772 . 1546-1718.
  54. Harapas . Cassandra R. . Robinson . Kim S. . Lay . Kenneth . Wong . Jasmine . Moreno Traspas . Ricardo . Nabavizadeh . Nasrin . Rass-Rothschild . Annick . Boisson . Bertrand . Drutman . Scott B. . Laohamonthonkul . Pawat . Bonner . Devon . Xiong . Jingwei Rachel . Gorrell . Mark D. . Davidson . Sophia . Yu . Chien-Hsiung . 2022-09-16 . DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling . Science Immunology . 7 . 75 . eabi4611 . 10.1126/sciimmunol.abi4611 . 2470-9468 . 9844213 . 36112693.
  55. Moreno Traspas . Ricardo . Teoh . Tze Shin . Wong . Pui-Mun . Maier . Michael . Chia . Crystal Y. . Lay . Kenneth . Ali . Nur Ain . Larson . Austin . Al Mutairi . Fuad . Al-Sannaa . Nouriya Abbas . Faqeih . Eissa Ali . Alfadhel . Majid . Cheema . Huma Arshad . Dupont . Juliette . Bézieau . Stéphane . August 2022 . Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis . Nature Genetics . 54 . 8 . 1214–1226 . 10.1038/s41588-022-01120-0 . 1546-1718 . 35864190. 10754/679809 . 250954453 . free .
  56. Thomas . Quentin . Motta . Marialetizia . Gautier . Thierry . Zaki . Maha S. . Ciolfi . Andrea . Paccaud . Julien . Girodon . François . Boespflug-Tanguy . Odile . Besnard . Thomas . Kerkhof . Jennifer . McConkey . Haley . Masson . Aymeric . Denommé-Pichon . Anne-Sophie . Cogné . Benjamin . Trochu . Eva . 2022-10-06 . Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly . American Journal of Human Genetics . 109 . 10 . 1909–1922 . 10.1016/j.ajhg.2022.08.008 . 1537-6605 . 9606387 . 36044892.
  57. Nabavizadeh . Nasrinsadat . Bressin . Annkatrin . Shboul . Mohammad . Moreno Traspas . Ricardo . Chia . Poh Hui . Bonnard . Carine . Szenker-Ravi . Emmanuelle . Sarıbaş . Burak . Beillard . Emmanuel . Altunoglu . Umut . Hojati . Zohreh . Drutman . Scott . Freier . Susanne . El-Khateeb . Mohammad . Fathallah . Rajaa . 2023-02-08 . A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing . EMBO Molecular Medicine . 15 . 2 . e16478 . 10.15252/emmm.202216478 . 1757-4684 . 9906387 . 36652330.
  58. Westrip . Christian A. E. . Paul . Franziska . Al-Murshedi . Fathiya . Qaitoon . Hashim . Cham . Breana . Fletcher . Sally C. . Hendrix . Eline . Boora . Uncaar . Ng . Alvin Yu Jin . Bonnard . Carine . Najafi . Maryam . Alawbathani . Salem . Lambert . Imelda . Fox . Gabriel . Venkatesh . Byrappa . 2022-09-23 . Inactivation of DRG1, encoding a translation factor GTPase, causes a Recessive Neurodevelopmental Disorder . en . 10.1101/2022.09.20.22279914v1.
  59. Wong . Samantha . Tan . Yu Xuan . Tan . Kiat Yi . Loh . Abigail . Aziz . Zainab . Özkan . Engin . Kayserili . Hülya . Escande-Beillard . Nathalie . Reversade . Bruno . 2022-03-04 . A Progeroid Syndrome Caused by RAF1 deficiency Underscores the importance of RTK signaling for Human Development . en . 10.1101/2022.02.20.22271260.
  60. Cell. Lee. Hojoon X.. Ambrosio. Andrea L.. Reversade. Bruno. De Robertis. E.M.. 124. 1. 147–159. 2006-01-13. 10.1016/j.cell.2005.12.018. 16413488. 2486255.
  61. Bmp Signaling: Turning a Half into a Whole. Cell. Kimelman. David. Pyati. Ujwal J.. 123. 6. 982–984. 2005-12-16. 10.1016/j.cell.2005.11.028. 16360027. 14376376. free.
  62. etal. Mbarek. Hamdi. Steinberg. Stacy. Nyholt. Dale R.. American Journal of Human Genetics. 98. 5. 898–908. 2016-05-05. 10.1016/j.ajhg.2016.03.008. 27132594. 4863559.
  63. Developmental biology: Two by two. Cyranoski. David. Nature. 458. 7240. 826–829. 2009-04-15. 10.1038/458826a. 19370006. free.
  64. van Dongen. Jenny. Gordon. Scott D.. McRae. Allan F.. Odintsova. Veronika V.. Mbarek. Hamdi. Breeze. Charles E.. Sugden. Karen. Lundgren. Sara. Castillo-Fernandez. Juan E.. Hannon. Eilis. Moffitt. Terrie E.. 2021-09-28. Identical twins carry a persistent epigenetic signature of early genome programming. Nature Communications. 12. 1. 5618. 10.1038/s41467-021-25583-7. 2041-1723. 34584077. 8479069. 2021NatCo..12.5618V.
  65. News: NewScientist. DNA markers reveal if you shared a womb with twin that didn't survive.
  66. Chng. Serene C.. Ho. Lena. Tian. Jing. Reversade. Bruno. 2013-12-23. ELABELA: a hormone essential for heart development signals via the apelin receptor. Developmental Cell. 27. 6. 672–680. 10.1016/j.devcel.2013.11.002. 24316148. free.
  67. US. 9309314. 2016-04-12. Polypeptides, nucleic acids and uses thereof. A*STAR. Reversade. Bruno.
  68. Murza. Alexandre. Sainsily. Xavier. Coquerel. David. etal. 2016-03-17. Discovery and Structure–Activity Relationship of a Bioactive Fragment of ELABELA that Modulates Vascular and Cardiac Functions. Journal of Medicinal Chemistry. 59. 7. 2962–2972. 10.1021/acs.jmedchem.5b01549. 26986036.
  69. Read. Cai. Nyimanu. Duuamene. Williams. Thomas L.. etal. October 2019. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacological Reviews. 71. 4. 467–502. 10.1124/pr.119.017533. 6731456. 31492821.
  70. Helker. Christian SM. Schuermann. Annika. Pollmann. Cathrin. Chng. Serene C. Kiefer. Friedemann. Reversade. Bruno. Herzog. Wiebke. 2015-05-27. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. eLife. 27. 4. 10.7554/eLife.06726. 4468421. 26017639 . free .
  71. Sharma. Bikram. Ho. Lena. Ford. Gretchen. etal. 2017-09-25. Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts. Developmental Cell. 42. 6. 655–666.E3. 10.1016/j.devcel.2017.08.008. 5895086. 28890073.
  72. Ho. Lena. van Dijk. Marie. Chye. Sam Tan Jian. Messerschmidt. Daniel M.. etal. 2017-08-18. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 357. 6352. 707–713. 2017Sci...357..707H. 10.1126/science.aam6607. 28663440. free.
  73. Hassan. Sonia S. Gomez-Lopez. Nardhy. 2019-07-06. Reducing maternal mortality: can elabela help in this fight?. The Lancet. 394. 10192. 8–9. 10.1016/S0140-6736(19)30543-4. 31282362. 195829649.
  74. Web site: Williams. Ruth. 2017-06-29. Anti-Preeclampsia Hormone Discovered. The Scientist. https://web.archive.org/web/20191214174225/https://www.the-scientist.com/daily-news/anti-preeclampsia-hormone-discovered-31305. 2019-12-14. 2019-12-14.
  75. Ho. Lena. Tan. Shawn Y.X.. Wee. Sheena. etal. 2015-10-01. ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway. Cell Stem Cell. 17. 4. 435–447. 10.1016/j.stem.2015.08.010. 26387754. free.
  76. Ason. Brandon. Chen. Yinhong. Guo. Qi. Hoagland. Kimberly M.. Chui. Ray W.. Fielden. Mark. Sutherland. Weston. Chen. Rhonda. Zhang. Ying. Mihardja. Shirley. Ma. Xiaochuan. 2020-04-23. Cardiovascular response to small-molecule APJ activation. JCI Insight. 5. 8. 10.1172/jci.insight.132898. 2379-3708. 7205427. 32208384.
  77. Zhang. Shan. Reljić. Boris. Liang. Chao. Kerouanton. Baptiste. Francisco. Joel Celio. Peh. Jih Hou. Mary. Camille. Jagannathan. Narendra Suhas. Olexiouk. Volodimir. Tang. Claire. Fidelito. Gio. 2020-03-11. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nature Communications. 11. 1. 1312. 10.1038/s41467-020-14999-2. 2041-1723. 7066179. 32161263. 2020NatCo..11.1312Z.
  78. Lausberg. Eva. Gießelmann. Sebastian. Dewulf. Joseph P.. Wiame. Elsa. Holz. Anja. Salvarinova. Ramona. van Karnebeek. Clara D.. Klemm. Patricia. Ohl. Kim. Mull. Michael. Braunschweig. Till. 2021-06-15. C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation. The Journal of Clinical Investigation. 131. 12. 10.1172/JCI143078. 1558-8238. 8203463. 33945503.
  79. Web site: 5 Jahre Stipendium "Society in Science". 5 years of fellowship "Society in Science":Rich Harvest. German. 2009-02-23. ETH Zurich. https://web.archive.org/web/20191206215240/https://www.ethlife.ethz.ch/archive_articles/090223_branco_weiss_stipendium/. 2019-12-06. 2019-12-06.
  80. 22 young group leaders recognized as EMBO Young Investigators. Heidelberg. European Molecular Biology Organization. 2012-11-14. https://web.archive.org/web/20181029191542/http://www.embo.org/news/press-releases/2012/22-young-group-leaders-recognized-as-embo-young-investigators. 2018-10-29. 2019-12-06.
  81. Web site: Awarded NRF Investigators. Government of Singapore. 2018. https://web.archive.org/web/20191207220341/https://www.nrf.gov.sg/docs/default-source/default-document-library/nrf-investigators-portfolio_updated-15-nov-2018.pdf. 2019-12-07. 2019-12-07.