Brown measure explained

In mathematics, the Brown measure of an operator in a finite factor is a probability measure on the complex plane which may be viewed as an analog of the spectral counting measure (based on algebraic multiplicity) of matrices.

It is named after Lawrence G. Brown.

Definition

Let

l{M}

be a finite factor with the canonical normalized trace

\tau

and let

I

be the identity operator. For every operator

A\inl{M},

the function\lambda \mapsto \tau(\log \left|A-\lambda I\right|), \; \lambda \in \Complex,is a subharmonic function and its Laplacian in the distributional sense is a probability measure on

\Complex

\mu_A(\mathrm(a+b\mathbb)) := \frac\nabla^2 \tau(\log \left|A-(a+b\mathbb) I\right|)\mathrma\mathrmbwhich is called the Brown measure of

A.

Here the Laplace operator

\nabla2

is complex.

\DeltaFK

as follows\lambda \mapsto \log\Delta_(A-\lambda I), \; \lambda \in \Complex.

References