Broer–Kaup equations explained

The Broer–Kaup equations are a set of two coupled nonlinear partial differential equations:[1]

uy,t+(2uux)x+2vxx-uxxy=0

vt+2(vu)x+vxx=0

References

  1. 阎振亚著 《复杂非线性波的构造性理论及其应用》 第65页 科学出版社 2007年(in Chinese, SCIENCEP 2007)
  1. Graham W. Griffiths, William E. Shiesser, "Traveling Wave Analysis of Partial Differential Equations", p. 135 Academic Press
  2. Richard H. Enns, George C. McCGuire, Nonlinear Physics, Birkhauser, 1997
  3. Inna Shingareva, Carlos Lizárraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple Springer.
  4. Eryk Infeld and George Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge 2000
  5. Saber Elaydi, An Introduction to Difference Equationns, Springer 2000
  6. Dongming Wang, Elimination Practice, Imperial College Press 2004
  7. David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998
  8. George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998