Brodmann area 9 explained

Brodmann area 9
Latin:area frontalis granularis
Width:250

Brodmann area 9, or BA9, refers to a cytoarchitecturally defined portion of the frontal cortex in the brain of humans and other primates. Its cytoarchitecture is referred to as granular due to the concentration of granule cells in layer IV. It contributes to the dorsolateral and medial prefrontal cortex.

Functions

The area is involved in short term memory,[1] evaluating recency,[2] overriding automatic responses,[3] verbal fluency,[4] error detection,[5] auditory verbal attention,[6] inferring the intention of others,[7] inferring deduction from spatial imagery,[8] inductive reasoning,[9] attributing intention,[10] sustained attention involved in counting a series of auditory stimuli,[11] and displays lower levels of energy consumption in individuals suffering from bipolar disorder.[12]

The area found on the left hemisphere is at least partially responsible for empathy,[13] idioms,[14] [15] processing pleasant and unpleasant emotional scenes,[16] self criticisms[17] and attention to negative emotions.[18]

On the right hemisphere the region is involved in attributing intention,[19] theory of mind,[20] suppressing sadness,[21] working memory,[22] [23] [24] spatial memory,[25] [26] recognition,[27] [28] [29] recall,[28] [30] [31] recognizing the emotions of others,[32] planning,[33] calculation,[34] [35] semantic and perceptual processing of odors,[36] religiosity,[37] and attention to positive emotions.[18]

Guenon

Brodmann area 9 also exists in the frontal lobe of the guenon. Brodmann-1909 regarded it on the whole as topographically and cytoarchitecturally homologous to the granular frontal area 9 and frontopolar area 10 in the human. Distinctive features (Brodmann-1905): Unlike Brodmann area 6 (Brodmann-1909), area 9 has a distinct internal granular layer (IV); unlike Brodmann area 6 or Brodmann area 8 (Brodmann-1909), its internal pyramidal layer (V) is divisible into two sublayers, an outer layer 5a of densely distributed medium-size ganglion cells that partially merges with layer IV, and an inner, clearer, cell-poor layer 5b; the pyramidal cells of sublayer 3b of the external pyramidal layer (III) are smaller and sparser in distribution; the external granular layer (II) is narrow, with small numbers of sparsely distributed granule cells.[38]

See also

External links

Notes and References

  1. Babiloni C, Ferretti A, Del Gratta C . Human cortical responses during one-bit delayed-response tasks: an fMRI study . Brain Research Bulletin . 65 . 5 . 383–90 . May 2005 . 15833592 . 10.1016/j.brainresbull.2005.01.013. 8559918 . etal.
  2. Zorrilla LT, Aguirre GK, Zarahn E, Cannon TD, D'Esposito M . Activation of the prefrontal cortex during judgments of recency: a functional MRI study . NeuroReport . 7 . 15–17 . 2803–6 . November 1996 . 8981471 . 10.1097/00001756-199611040-00079.
  3. Kübler A, Dixon V, Garavan H . Automaticity and reestablishment of executive control-an fMRI study . Journal of Cognitive Neuroscience . 18 . 8 . 1331–42 . August 2006 . 16859418 . 10.1162/jocn.2006.18.8.1331. 2262/24759 . 12786454 . free .
  4. Abrahams S, Goldstein LH, Simmons A . Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses . Human Brain Mapping . 20 . 1 . 29–40 . September 2003 . 12953304 . 10.1002/hbm.10126. etal. 6872028 .
  5. Chevrier AD, Noseworthy MD, Schachar R . Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI . Human Brain Mapping . 28 . 12 . 1347–58 . December 2007 . 17274022 . 10.1002/hbm.20355. 6871417 .
  6. Nakai T, Kato C, Matsuo K . An FMRI study to investigate auditory attention: a model of the cocktail party phenomenon . Magnetic Resonance in Medical Sciences . 4 . 2 . 75–82 . 2005 . 16340161 . 10.2463/mrms.4.75. free .
  7. Goel V, Grafman J, Sadato N, Hallett M . Modeling other minds . NeuroReport . 6 . 13 . 1741–6 . September 1995 . 8541472 . 10.1097/00001756-199509000-00009. 8560791 .
  8. Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW . Spatial imagery in deductive reasoning: a functional MRI study . Brain Research. Cognitive Brain Research . 13 . 2 . 203–12 . April 2002 . 11958963 . 10.1016/S0926-6410(01)00116-1. 10.1.1.15.1109 .
  9. Goel V, Gold B, Kapur S, Houle S . The seats of reason? An imaging study of deductive and inductive reasoning . NeuroReport . 8 . 5 . 1305–10 . March 1997 . 9175134 . 10.1097/00001756-199703240-00049. 13586482 .
  10. Fink GR, Marshall JC, Halligan PW . The neural consequences of conflict between intention and the senses . Brain . 122 . 3 . 497–512 . March 1999 . 10094258 . 10.1093/brain/122.3.497. etal. free . 21.11116/0000-0001-A22E-5 . free .
  11. Shallice T, Stuss DT, Alexander MP, Picton TW, Derkzen D . The multiple dimensions of sustained attention . Cortex . 44 . 7 . 794–805 . 2008 . 18489960 . 10.1016/j.cortex.2007.04.002. 18269906 .
  12. Brooks JO, Bearden CE, Hoblyn JC, Woodard SA, Ketter TA . Prefrontal and paralimbic metabolic dysregulation related to sustained attention in euthymic older adults with bipolar disorder . Bipolar Disorders . 12 . 8 . 866–74 . December 2010 . 21176034 . 10.1111/j.1399-5618.2010.00881.x.
  13. Farrow TF, Zheng Y, Wilkinson ID . Investigating the functional anatomy of empathy and forgiveness . NeuroReport . 12 . 11 . 2433–8 . August 2001 . 11496124 . 10.1097/00001756-200108080-00029. 34437619 . etal.
  14. Maddock RJ, Buonocore MH . Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: an fMRI study . Psychiatry Research . 75 . 1 . 1–14 . August 1997 . 9287369 . 10.1016/s0925-4927(97)00018-8. 23014601 .
  15. Lauro LJ, Tettamanti M, Cappa SF, Papagno C . Idiom comprehension: a prefrontal task? . Cerebral Cortex . 18 . 1 . 162–70 . January 2008 . 17490991 . 10.1093/cercor/bhm042. free .
  16. Lane RD, Reiman EM, Bradley MM . Neuroanatomical correlates of pleasant and unpleasant emotion . Neuropsychologia . 35 . 11 . 1437–44 . November 1997 . 9352521 . 10.1016/S0028-3932(97)00070-5. 1322021 . etal.
  17. Longe O, Maratos FA, Gilbert P . Having a word with yourself: neural correlates of self-criticism and self-reassurance . NeuroImage . 49 . 2 . 1849–56 . January 2010 . 19770047 . 10.1016/j.neuroimage.2009.09.019. 9912957 . etal.
  18. Kerestes R, Ladouceur CD, Meda S . Abnormal prefrontal activity subserving attentional control of emotion in remitted depressed patients during a working memory task with emotional distracters . Psychological Medicine . 42 . 1 . 29–40 . January 2012 . 21733287 . 10.1017/S0033291711001097. 4984022 . etal.
  19. Brunet E, Sarfati Y, Hardy-Baylé MC, Decety J . A PET investigation of the attribution of intentions with a nonverbal task . NeuroImage . 11 . 2 . 157–66 . February 2000 . 10679187 . 10.1006/nimg.1999.0525. 11846982 .
  20. Gallagher HL, Jack AI, Roepstorff A, Frith CD . Imaging the intentional stance in a competitive game . NeuroImage . 16 . 3 Pt 1 . 814–21 . July 2002 . 12169265 . 10.1006/nimg.2002.1117. 1733601 .
  21. Kaur S, Sassi RB, Axelson D . Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder . The American Journal of Psychiatry . 162 . 9 . 1637–43 . September 2005 . 16135622 . 10.1176/appi.ajp.162.9.1637. etal.
  22. Zhang JX, Leung HC, Johnson MK . Frontal activations associated with accessing and evaluating information in working memory: an fMRI study . NeuroImage . 20 . 3 . 1531–9 . November 2003 . 14642465 . 10.1016/j.neuroimage.2003.07.016. 17878279 .
  23. Pochon JB, Levy R, Fossati P . The neural system that bridges reward and cognition in humans: an fMRI study . Proceedings of the National Academy of Sciences of the United States of America . 99 . 8 . 5669–74 . April 2002 . 11960021 . 122829 . 10.1073/pnas.082111099 . 2002PNAS...99.5669P . 3058552. etal. free .
  24. Raye CL, Johnson MK, Mitchell KJ, Reeder JA, Greene EJ . Neuroimaging a single thought: dorsolateral PFC activity associated with refreshing just-activated information . NeuroImage . 15 . 2 . 447–53 . February 2002 . 11798278 . 10.1006/nimg.2001.0983. 497926 .
  25. Slotnick SD, Moo LR . Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory . Neuropsychologia . 44 . 9 . 1560–8 . 2006 . 16516248 . 10.1016/j.neuropsychologia.2006.01.018. 14396813 .
  26. Leung HC, Gore JC, Goldman-Rakic PS . Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda . Journal of Cognitive Neuroscience . 14 . 4 . 659–71 . May 2002 . 12126506 . 10.1162/08989290260045882. 10.1.1.211.3485 . 33797492 .
  27. Ranganath C, Johnson MK, D'Esposito M . Prefrontal activity associated with working memory and episodic long-term memory . Neuropsychologia . 41 . 3 . 378–89 . 2003 . 12457762 . 10.1016/S0028-3932(02)00169-0. 10.1.1.418.2955 . 1281343 .
  28. Rugg MD, Fletcher PC, Frith CD, Frackowiak RS, Dolan RJ . Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval . Brain . 119 . 6 . 2073–83 . December 1996 . 9010011 . 10.1093/brain/119.6.2073. free . 21.11116/0000-0001-A05C-3 . free .
  29. Tulving E, Habib R, Nyberg L, Lepage M, McIntosh AR . Positron emission tomography correlations in and beyond medial temporal lobes . Hippocampus . 9 . 1 . 71–82 . 1999 . 10088902 . 10.1002/(SICI)1098-1063(1999)9:1<71::AID-HIPO8>3.0.CO;2-F. 10.1.1.538.2507 . 14846471 .
  30. Tulving E, Kapur S, Markowitsch HJ, Craik FI, Habib R, Houle S . Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition . Proceedings of the National Academy of Sciences of the United States of America . 91 . 6 . 2012–5 . March 1994 . 8134341 . 43299 . 10.1073/pnas.91.6.2012 . 1994PNAS...91.2012T . 2364162. free .
  31. Düzel E, Picton TW, Cabeza R . Comparative electrophysiological and hemodynamic measures of neural activation during memory-retrieval . Human Brain Mapping . 13 . 2 . 104–23 . June 2001 . 10.1002/hbm.1028 . 11346889. 6872004 . etal. 10.1.1.714.6378 .
  32. Bermpohl F, Pascual-Leone A, Amedi A . Attentional modulation of emotional stimulus processing: an fMRI study using emotional expectancy . Human Brain Mapping . 27 . 8 . 662–77 . August 2006 . 16317710 . 10.1002/hbm.20209. etal. 6871342 .
  33. Fincham JM, Carter CS, van Veen V, Stenger VA, Anderson JR . Neural mechanisms of planning: a computational analysis using event-related fMRI . Proceedings of the National Academy of Sciences of the United States of America . 99 . 5 . 3346–51 . March 2002 . 11880658 . 122521 . 10.1073/pnas.052703399 . 2002PNAS...99.3346F . 3058122. free .
  34. Xie S, Xiao J, Jiang X . zh:正常老年人计算任务的脑功能磁共振成像研究 . The fMRI study of the calculation tasks in normal aged volunteers . zh . Journal of Peking University . 35 . 3 . 311–3 . June 2003 . 12914254 . The fMRI study of the calculation tasks in normal aged volunteers . dead . https://web.archive.org/web/20141107005300/http://xuebao.bjmu.edu.cn/fileup/PDF/200335311.pdf . 2014-11-07 .
  35. Rickard TC, Romero SG, Basso G, Wharton C, Flitman S, Grafman J . The calculating brain: an fMRI study . Neuropsychologia . 38 . 3 . 325–35 . 2000 . 10678698 . 10.1016/S0028-3932(99)00068-8. 2413702 .
  36. Royet JP, Koenig O, Gregoire MC . Functional anatomy of perceptual and semantic processing for odors . Journal of Cognitive Neuroscience . 11 . 1 . 94–109 . January 1999 . 9950717 . 10.1162/089892999563166. 20076761 . etal.
  37. Azari NP, Nickel J, Wunderlich G . Neural correlates of religious experience . The European Journal of Neuroscience . 13 . 8 . 1649–52 . April 2001 . 11328359 . 10.1046/j.0953-816x.2001.01527.x. 22241837 . etal.
  38. Web site: BrainInfo . 2013-12-03 . bot: unknown . https://web.archive.org/web/20131207021330/http://braininfo.rprc.washington.edu/centraldirectory.aspx?type=a&ID=1046 . December 7, 2013 .