Metrication opposition explained

The spread of metrication around the world in the last two centuries has been met with both support and opposition.

Metrication

See main article: Metrication.

The United States of America officially accepted the Metric System in 1878 but United States customary units remain ubiquitous outside the science and technology sector. The metric system has been largely adopted in Canada and Ireland, and partially adopted in the United Kingdom and Hong Kong, without having fully displaced imperial units from all areas of life. In other Anglophone countries such as Australia, Singapore and New Zealand, imperial units have been formally deprecated and are no longer officially sanctioned for use.[1] [2]

Technical arguments

Natural evolution and human scale

One argument used by opponents of the metric system is that traditional systems of measurement were developed organically from actual use.[3] Early measures were human in scale, intuitive, and imprecise, as illustrated by still-current expressions such as a stone's throw, within earshot, a cartload or a handful. These measurements' developers, living and working in an era before modern science, gave fundamental priority to ease of learning and use; moreover, the variation permissible within these measurements allowed them to be relational and commensurable: a request for a judgment of measure allowed for a variety of answers, depending on context. In parts of Malaysia, villagers asked the distance to the next village were likely to respond with three rice cookings; an approximation of the time it would take to travel there on foot. Everyone is assumed to know both how long it takes to cook rice, and how fast a person walks. Nominally standard units were also subject to contextual variations. The aune, a French ell used for measuring cloth, depended on the sort of cloth being measured, taking price and scarcity into account: an aune of silk was shorter than an aune of linen.[4]

Nowadays most non-metric units are standardised to fixed values, which eliminates the disadvantage of imprecision while retaining the advantage of human scale. For example, the advocacy group British Weights and Measures Association has argued that metrication led to greater complexity for consumers accustomed to imperial units because, unlike the ounce, a single gram is too small a measurement in everyday life.[5]

Divisibility

Metric opponents cite easier division of customary units as one reason not to adopt a decimalised system. For example, those customary units with ratios of 12 and 16 have more proper factors, and, than the metric 10: . However, easily divisible numbers can be selected for use with metric units, e.g. 300 mm and its multiples. The number of times that these odd fractional numbers would come up has also been pointed out as a counterargument; in construction and engineering, for example, measurements would not only be likely to be in integers to begin with, but would also rarely be needed to convert to another unit.

The main disadvantage cited by critics of customary measures is the proliferation of units, their (sometimes) non-unique definition and the difficulty in remembering the ratios between them.

Duplication in naming and usage

A common argument for the metric system is that it avoids duplication of naming and the associated confusion. The most commonly cited example is pound (force) vs pound (mass), which have the same symbol and are both commonly written simply as "pounds", which can lead to costly and dangerous shipping and engineering errors. Opponents of metrication argue that this issue only occurs due to misuse; when used 'properly', there is no cause for confusion.

Separately, it is also argued that customary units feature too many overlapping units. The most commonly cited examples are in liquid volume, where metric has simply litres while customary has gallons, pints, quarts, fluid ounces, and the rarely used gill, and minim, all of which cover volumes of liquid in similar ranges. Metrication opponents argue that this allows for easily listing amounts that are awkward in metric (e.g. 1 liquid pint = 568.3 mL in the UK and 473 mL in the US) but are commonly used and avoids "excessive" use of decimals and fractions. These problems however would disappear if metrication continues and they cease to become as common, replaced with a metric equivalent. For example, a pint is often rounded down to 0.5 L, otherwise sometimes rounded up to 0.6 L.

Industry-specific product sizing

Metric opposed artisans and practitioners may be concerned by certain dimensions being less memorable with metric units. As the table below shows, industries have addressed such concerns by using a "hard conversion" into metric units of the dimensions involved. (Metric conversion also gives the opportunity to "Rationalize" the range of sizes which are available.[6]):

IndustryCommon referenceMetric reference
Carpentry4 ft × 8 ft plywood 1219 mm × 2438 mm (exact)
1200 mm × 2400 mm (Europe)
2400 mm × 1200 mm (Australia/NZ - Largest value first)
2" by 4" 50.8 mm × 101.6 mm (exact - however planing makes the actual dimensions narrower.)
50 mm × 100 mm (Europe) (However, planing makes the actual dimensions 3~8 mm narrower)
90 mm × 45 mm (Australia/NZ - Accurate "rationalized" planed values are used, with the largest value first.)[7]

Some industries, even in metric countries, have adopted industry standards which are not obviously multiples of metric units. One example of this is paper sizes: the widely used A series specification begins from A0, which has a surface area of 1 square metre, with sides in the ratio of approximately 1: (841mm by 1189mm). This ratio has the unique property that when cut or folded in half widthways, the halves also have the same aspect ratio. Each ISO paper size is one half of the area of the next larger size in the same series. This means that A4 business letter paper is  m2 (0.0625 m2), yielding sides that are 210 mm × 297 mm.

Political arguments

Tradition

Traditionalists consider the retention of traditional non-metric units as a form of traditionalism, valuing historic usage spanning centuries.

Non-metric units often have had different values in different times and places, and some units such as the stone even had different definitions depending on the type of object measured. At the time of the French Revolution there were over 5000 different foot measures. The current UK imperial system is based on the Weights and Measures Act 1824 (5 Geo. 4. c. 74), dating from about 30 years after the founding of the metric system, and some of its units differ very significantly from the United States customary units of the same name.

By contrast, the metric system has remained unchanged (for most practical purposes) since it was first defined. Even though the metre was initially defined to equal one ten-millionth of the length of the meridian through Paris from pole to the equator, the first prototype metre bar was subsequently found to be short by 0.2 millimetres (because researchers miscalculated the flattening of the Earth). Nevertheless, this original reference metre was retained, leaving the exact distance from equator to pole slightly more than ten million metres. The need for a more practical and reproducible definition of the metre and advances in metrology have led to increased precision in the definition, so that it is now defined as the length travelled by light in a vacuum during the time interval of of a second. In addition, a reference standard (a rod of platinum-iridium alloy) is maintained by the inter-governmental organisation the International Bureau of Weights and Measures, and calibration of a standard metre is usually achieved (to one part in a billion, or slightly better in some recent installations) by counting 1,579,800.298728 wavelengths of the ultra-fine (3s2 to 2p4) emission line of helium–neon laser light (this wavelength being approximately 632.99139822 nm in a vacuum).

Government compulsion

The adoption of metric units has required some government compulsion[8] and some have argued that such policies are wrong in principle.[9] Compulsory standards of weights and measures go back as far as Magna Carta. In 1824 in Britain, the Weights and Measures Act ("An Act for ascertaining and establishing Uniformity of Weights and Measures") consolidated the various gallons in use at the time and established a new imperial gallon, and prohibited the use of the older units, including what the United States now calls customary US measure.

Anti-metrication in the UK often manifests itself in conjunction with Euroscepticism, though the UK had taken steps toward compulsory metrication prior to European Union membership: in 1951, a Board of Trade committee unsuccessfully recommended metrication to the government,[10] ten years before the UK first applied to join the EEC. The Board of Trade initiated metrication in 1965, with a target completion date of 1975 and the Metrication Board was established in 1968, five years before the UK actually joined the European Economic Community (on its second attempt). The EU's own Units of Measurement Directive dated from 1971 and was substantially revised in 1979.

All Statutory Instruments about metrication since 1985 have relied on powers derived from the UK European Communities Act 1972. This helped to reinforce anti-EU sentiment, as the British Parliament does not vote on such measures. More recently, opponents of metrication have asserted that legal compulsion under the Weights and Measures Act 1985 to adopt the metric system instead of their traditional weights and measures is an infringement of the right to freedom of speech, though this claim has been consistently rejected by the courts. On 25 February 2004, the European Court of Human Rights rejected an application from some British shopkeepers who said that their human rights had been violated.

On 8 May 2007, several British newspapers including The Times[11] used correspondence between Giles Chichester MEP and EU Commissioner Günter Verheugen to report that the European Commission had decided to allow meat, fish, fruit and vegetables to continue to be sold in pounds and ounces. These reports did not mention that pounds and ounces would only retain supplementary unit status. On 10 September, the EU Commission published proposed amendments to the Units of Measurement Directive that would permit supplementary units (such as pounds and ounces) to be used indefinitely alongside, but not instead of, the units catalogued in the Units of Measurement Directive. The reporting of this decision in the British press was sufficiently misleading that the Roger Marles, Head of [British] Trading Standards, issued the following statement:

In the US, there is also government compulsion with weights and measures. Federal and state laws control the labelling of goods for sale in the supermarket, drugs, wine, liquor, etc. The US Fair Packaging and Labeling Act mandates that measurement must be in both metric and US customary units.[12] However, wine must be bottled in 50 ml, 100 ml, 187 ml, 375 ml, 500 ml, 750 ml, 1 litre, 1.5 litre, or 3 litre sizes. Containers over 3 litres must be bottled in quantities of whole numbers of litres. No other sizes may be bottled.[13] Spirits must also be sold in metric quantities.[14]

NASA, the United States' space agency, has taken a less compulsory approach. On 29 March 2010, NASA decided to avoid making its proposed Constellation rocket system metric-compliant, especially due to pressure from manufacturers; ultimately the program was discontinued. It had been predicted that it would cost to convert to metric measurements for parts made by both NASA and external companies. Constellation would have borrowed technology from the 1970s-era Space Shuttle program, which used non-metric measurements in software and hardware.[15] NASA's non-compulsory position has contributed to at least one major mission-failure: in 1999, a contractor's use of pre-metric units caused the disintegration of NASA's $328 million Mars Climate Orbiter.[16] Despite NASA's non-compulsory policy, commercial space manufacturer SpaceX currently designs its systems (e.g., Dragon and Falcon 9) using metric units.

High modernism and legibility

Commentator Ken Alder noted that on the eve of the French Revolution a quarter of a million different units of measure were in use in France; in many cases the quantity associated with each unit of measure differed from town to town and often from trade to trade.[17] He claimed that the metric system originated in the ideology of Pure Reason from the more radical element of the French Revolution, that it was devised in France to try to make France "revenue-rich, militarily potent, and easily administered", and that it was part of a conscious plan to transform French culture, meant to unify and transform French society: "As mathematics was the language of science, so would the metric system be the language of commerce and industry."[18] In his 1998 monograph Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed, James C. Scott argued that central governments attempt to impose what he calls "legibility" on their subjects. Local customs concerning measurements, like local customs concerning patronymics, tend to come under severe pressure from bureaucrats. Scott's thesis is that in order for schemes to improve the human condition to succeed, they must take into account local conditions, and that the high-modernist ideologies of the 20th century have prevented this. Scott cites the enforcement of the metric system as a specific example of this sort of failed and resented "improvement" imposed by centralizing and standardizing authority.[19] While the metric system was introduced in the French law by the revolutionary government in April 1795,[20] it did not immediately displace traditional measurements in the popular mind. In fact, its use was initially associated with officialdom and elitism as François-René remarked in 1828: "Whenever you meet a fellow who, instead of talking arpents, toises, and pieds, refers to hectares, metres, and centimetres, rest assured, the man is a prefect."[21] However, it was largely used in France and in other countries by July 1837 when the decimal metric system was finally decided upon and considered the only official measurement system to be used in France.

Price inflation

The advocacy group British Weights and Measures Association argues that adopting metric measures in shops, especially in supermarkets, gives an opportunity for traders to increase prices covertly. They give numerous examples of packaged groceries to back up this contention.[22]

When Pepsi became the first in the United States to sell soft drinks in two-litre bottles[23] instead of two-quart (US) (1.89 litre) bottles, it was a success, and two-litre bottles are now well-established in the American soft drink market,[24] though fluid ounces remain the usual unit of measure for cans.

The move to smaller units (e.g., millilitre vs fluid ounce, gram vs ounce) allows manufacturers to move sizes of packaging up and down with more precision using whole numbers. For example, a 2-ounce bag of chips may be altered to 50 grams, then to 45 grams. Likewise, a variety of packaging sizes may arise, such as 690 grams (about 24 oz) or 1200 grams (about 42 oz), resulting from conversion and rounding of customary units. However, the precise adjustment of packaging sizes is also possible using customary units, e.g., the 2-ounce bag can be downsized to 1.8 and 1.6 ounces as well.

The Australian experience of metric conversion showed no evidence of price inflation caused by metrication.[25]

British Weights and Measures Association

British Weights and Measures Association
Size:200px
Abbreviation:BWMA
Formation:1995
Type:Advocacy group
Website:bwmaorg.uk

The current British Weights and Measures Association, or BWMA, is an advocacy group established in the United Kingdom in 1995, founded by Vivian Linacre.[26] The current body was established in 1995, but there had also been a predecessor organisation, also called the BWMA, that was established in 1904, and lapsed after the First World War.

Aim of the BWMA

The BWMA's stated aim is to uphold the freedom to use the Imperial system and to oppose the compulsory imposition of the metric system in the UK. The BWMA's campaign parallels the evolution of the eurosceptic viewpoint of the UK's relationship with the EU[27] - its founder, Vivian Linacre, stood for election as a UK Independence Party candidate in 1995, the same year as he founded the BWMA - famously asking the controversial eurosceptic Enoch Powell for endorsement of his political campaign.[28]

By the time of the modern BWMA's founding, metrication in the United Kingdom was far advanced, having begun in 1962. British schoolchildren had been educated using only metric measures since 1974 (earlier in some places), and British industry had changed to using metric tools and equipment during the 1980s and were, in most cases, manufacturing to metric standards.

Campaigns

Opposition

Patrons

Honorary members

See also

Further reading

Books supporting metrication
Books opposing metrication

External links

Notes and References

  1. Book: The World Factbook. https://web.archive.org/web/20070613023743/https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-g.html. dead. 13 June 2007. 6 September 2007. Washington: Central Intelligence Agency. Appendix G - Weights and Measures. 25 December 2007.
  2. Web site: Metrication in other countries: Metrication status and history . . 15 July 2015 . 28 April 2020 .
  3. Web site: Past its Sell-By Date. Lovegreen. Alan. 18 January 2007. The Yardstick (#1). British Weights and Measures Association.
  4. Book: Scott, James C. . James C. Scott

    . James C. Scott . . 25 . . 1998 . 0-300-07016-0 . 37392803.

  5. Web site: BWMA/Consumers - Death of Measurement . . 15 July 2007 . 17 November 2010.
  6. Book: Wilks . Kevin Joseph . Metrication in Australia : a review of the effectiveness of policies and procedures in Australia's conversion to the metric system . 1992 . Australian Govt. Pub. Service . Canberra . 9780644248600 . 1 December 2022.
  7. Web site: Archived copy . 8 May 2015 . 12 April 2015 . https://web.archive.org/web/20150412050505/http://www.wpv.org.au/docs/STPG.pdf . dead .
  8. http://www.consumer.vic.gov.au/CA256EB5000644CE/page/Trade+Measurement-Educational+Material+and+Links-Metrication+-+information+for+students?OpenDocument&1=930-Trade+Measurement~&2=930-Educational+Material+and+Links~&3=0-Metrication+-+information+for+students~
  9. Web site: AGAINST COMPULSORY METRICATION. Richard North. Libertarian.co.uk. 24 November 2014.
  10. http://ukma.org.uk/press/metrictimeline.aspx
  11. News: Consumer Affairs. The Times. 9 May 2007. 24 November 2014.
  12. Web site: FPLA Introduction . Ftc.gov . 17 November 2010 . dead . https://web.archive.org/web/20110606154737/http://www.ftc.gov/os/statutes/fpla/outline.html . 6 June 2011 .
  13. Web site: Wine Labeling Regulations. Ttb.gov. 24 November 2014.
  14. Web site: Distilled Spirit Labeling Regulations. Ttb.gov. 24 November 2014.
  15. Web site: REVIEW OF THE CONSTELLATION PROGRAM'S REQUEST TO DISCONTINUE USING THE METRIC SYSTEM OF MEASUREMENT. Oig.nasa.gov. 24 November 2014.
  16. Mars Climate Orbiter Mishap Investigation Board Phase I Report . NASA . 10 November 1999 . 20 April 2015.
  17. Book: Adler , Ken . The Measure of all Things - The Seven -Year-Odyssey that Transformed the World . 2002 . Abacus . London . 0-349-11507-9 . 2–3.
  18. Alder, Ken (1995). "A Revolution to Measure: The Political Economy of the Metric System in France", in The Values of Precision, edited by M. Norton Wise. (Princeton University Press, 1995), pp. 39-71.
  19. Scott, Seeing Like a State, pp. 30-33.
  20. Web site: Histoire de la mesure - du mètre au SI. metrologie-francaise.fr. 20 April 2011. French.
  21. Quoted in Witold Kula, Measures and Men, tr. R. Szreter (Princeton, 1986:), p. 286
  22. Web site: The Great Metric Rip-Off . . 15 July 2007 . 1 February 2010.
  23. News: PepsiCo - Company - History. PepsiCo . 24 November 2014 . 2006.
  24. Web site: PepsiCo Our History . PepsiCo.com . 17 November 2010.
  25. Web site: Metrication in Australia . 1992 . themetricmaven.com . . 22 August 2013.
  26. Web site: Database of archives of Non Governmental Organisations – BWMA . DANGO . 17 April 2007 . 17 August 2007 .
  27. http://bwma.org.uk/wp-content/uploads/2019/04/Ministers-Metrication-Conspiracy.pdf BWMA "Ministers' Metrication Conspiracy"
  28. https://www.telegraph.co.uk/news/politics/ukip/11291050/Nigel-Farage-and-Enoch-Powell-the-full-story-of-Ukips-links-with-the-Rivers-of-Blood-politician.html The Telegraph: "Nigel Farage and Enoch Powell"
  29. British Weights & Measures Association – Annual Awards . 21 May 2004 . 17 August 2007 .
  30. http://www.bwmaonline.com/Transport%20-%20Windsor%20Great%20Park.htm BWMA/Transport – De-metricated signs
  31. http://www.bwmaonline.com/Yardstick%2039%20-%20December%202009.doc Yardstick: Dec 2009
  32. http://www.statutelaw.gov.uk/legResults.aspx?LegType=Act+(UK+Public+General)&title=weights+and+measures&Year=1985&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&TYPE=QS&NavFrom=0&activeTextDocId=2191980&PageNumber=1&SortAlpha=0 Results within Legislation – Statute Law Database
  33. http://www.statutelaw.gov.uk/legResults.aspx?LegType=S.I.+(All+UK)&title=Price+marking+order&Year=2004&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&TYPE=QS&NavFrom=0&activeTextDocId=962202&PageNumber=1&SortAlpha=0 Results within Legislation – Statute Law Database
  34. http://www.bwmaonline.com/Business%20-%20Survival%20Guide%20to%20Metric%20Law.htm BWMA/Business Issues – Survival Guide to Metric Law
  35. http://www.bwmaonline.com/Metric%20Culprits.htm BWMA/Metric Culprits
  36. Web site: BWMA Patrons and Honorary members . British Weights and Measures Association . 17 August 2007 . https://web.archive.org/web/20120207130956/http://www.bwmaonline.com/Hon%20members.htm . 7 February 2012 . dead .
  37. Web site: Letter to Prime Minister . British Weights and Measures Association . 16 April 2006 . 17 August 2007 .
  38. http://www.jameslefanu.com/ jameslefanu.com