In mathematical analysis, the Brezis–Gallouët inequality,[1] named after Haïm Brezis and Thierry Gallouët, is an inequality valid in 2 spatial dimensions. It shows that a function of two variables which is sufficiently smooth is (essentially) bounded, and provides an explicit bound, which depends only logarithmically on the second derivatives. It is useful in the study of partial differential equations.
Let
\Omega\subsetR2
R2
C
\Omega
u\inH2(\Omega)
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
\|u\| | |
H1(\Omega) |
\left(1+l(logl(1+
| |||||
|
r)r)1/2\right).
Noticing that, for any
v\inH2(R2)
\int | |
R2 |
l(
2 | |
(\partial | |
11 |
v)2+
2 | |
2(\partial | |
12 |
v)2+
2 | |
(\partial | |
22 |
v)2r)=
\int | |
R2 |
2 | |
l(\partial | |
11 |
2 | |
v+\partial | |
22 |
vr)2,
C>0
\Omega
u\inH2(\Omega)
\displaystyle
\|u\| | |
Linfty(\Omega) |
\leqC
\|u\| | |
H1(\Omega) |
\left(1+l(logl(1+
| |||||||
|
r)r)1/2\right).
. Foias . Ciprian . Ciprian Foias . Manley . O. . Rosa . R. . Temam . R. . Navier–Stokes Equations and Turbulence . Cambridge University Press . Cambridge . 2001 . 0-521-36032-3 . registration .