Braunstein–Ghosh–Severini entropy explained
In network theory, the Braunstein–Ghosh–Severini entropy[1] [2] (BGS entropy) of a network is the von Neumann entropy of a density matrix given by a normalized Laplacian matrix of the network. This definition of entropy does not have a clear thermodynamical interpretation. The BGS entropy has been used in the context of quantum gravity.[3]
Notes and References
- Braunstein . Samuel L. . Samuel L. Braunstein. Ghosh . Sibasish . Severini . Simone . The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States . . Springer Science and Business Media LLC . 10 . 3 . 2006 . 0218-0006 . 10.1007/s00026-006-0289-3 . 291–317. quant-ph/0406165. 14522309 .
- Anand . Kartik . Bianconi . Ginestra. Ginestra Bianconi . Entropy measures for networks: Toward an information theory of complex topologies . Physical Review E . American Physical Society (APS) . 80 . 4 . 13 October 2009 . 1539-3755 . 10.1103/physreve.80.045102 . 045102(R). 0907.1514 . 19905379. 2009PhRvE..80d5102A . 27419558 .
- Rovelli . Carlo . Carlo Rovelli. Vidotto . Francesca . Francesca Vidotto. Single particle in quantum gravity and Braunstein-Ghosh-Severini entropy of a spin network . Physical Review D . 81 . 4 . 24 February 2010 . 1550-7998 . 10.1103/physrevd.81.044038 . 044038. 0905.2983. 2010PhRvD..81d4038R . 119287145 .