styleu
stylem-1
styleu
stylem
styleu
styleLp
styleRn
styleu
styleu
styleu
Additional assumptions on the domain are needed for the Bramble–Hilbert lemma to hold. Essentially, the boundary of the domain must be "reasonable". For example, domains that have a spike or a slit with zero angle at the tip are excluded. Lipschitz domains are reasonable enough, which includes convex domains and domains with continuously differentiable boundary.
The main use of the Bramble–Hilbert lemma is to prove bounds on the error of interpolation of function
styleu
stylem-1
styleu
stylem
Before stating the lemma in full generality, it is useful to look at some simple special cases. In one dimension and for a function
styleu
stylem
style\left(a,b\right)
inf | |
v\inPm-1 |
l\Vertu\left(-v\left(
r\Vert | |
Lp\left(a,b\right) |
\leqC\left(m,k\right)\left(b-a\right)m-kl\Vertu\left(
r\Vert | |
Lp\left(a,b\right) |
foreachintegerk\leqmandextendedrealp\geq1,
where
stylePm-1
stylem-1
f(k)
k
f
In the case when
stylep=infty
stylem=2
stylek=0
styleu
stylev
stylex\in\left(a,b\right)
\left\vertu\left(x\right)-v\left(x\right)\right\vert\leqC\left(b-a\right)2\sup\left(\left\vertu\prime\prime\right\vert.
This inequality also follows from the well-known error estimate for linear interpolation by choosing
stylev
styleu
Suppose
style\Omega
styleRn
stylen\geq1
style\partial\Omega
styled
k(\Omega) | |
styleW | |
p |
styleu
style\Omega
styleD\alphau
style\left\vert\alpha\right\vert
stylek
styleLp(\Omega)
style\alpha=\left(\alpha1,\alpha2,\ldots,\alphan\right)
style\left\vert\alpha\right\vert=
style\alpha1+\alpha2+ … +\alphan
styleD\alpha
style\alpha1
stylex1
style\alpha2
stylex2
m(\Omega) | |
styleW | |
p |
styleLp
\left\vertu\right\vert
|
=\left(\sum\left\vert\left\VertD\alpha
p\right) | |
u\right\Vert | |
Lp(\Omega) |
1/pif1\leqp<infty
and
\left\vertu\right\vert
|
=max\left\vert\left\VertD\alphau\right\Vert
Linfty(\Omega) |
stylePk
stylek
styleRn
styleD\alphav=0
stylev\inPm-1
style\left\vert\alpha\right\vert=m
style\left\vertu+v\right\vert
|
stylev\inPm-1
Lemma (Bramble and Hilbert) Under additional assumptions on the domain
style\Omega
styleC=C\left(m,\Omega\right)
stylep
styleu
styleu\in
m(\Omega) | |
W | |
p |
stylev\inPm-1
stylek=0,\ldots,m,
\left\vertu-v\right\vert
|
\leqCdm-k\left\vertu\right\vert
|
.
The lemma was proved by Bramble and Hilbert [1] under the assumption that
style\Omega
style\left\{Oi\right\}
style\partial\Omega
style\{Ci\}
stylex+Ci
style\Omega
stylex
style\in\Omega\capOi
The statement of the lemma here is a simple rewriting of the right-hand inequality stated in Theorem 1 in.[1] The actual statement in [1] is that the norm of the factorspace
m | |
styleW | |
p |
(\Omega)/Pm-1
m | |
styleW | |
p |
(\Omega)
m | |
styleW | |
p |
(\Omega)
styled
In the original result, the choice of the polynomial is not specified, and the value of constant and its dependence on the domain
style\Omega
An alternative result was given by Dupont and Scott [2] under the assumption that the domain
style\Omega
styleB
stylex\in\Omega
style\left\{x\right\}\cupB
style\Omega
style\rhomax
style\gamma=d/\rhomax
style\Omega
Then the lemma holds with the constant
styleC=C\left(m,n,\gamma\right)
style\Omega
style\gamma
stylen
v
v=Qmu
styleQmu
Qmu=\intB
mu\left( | |
T | |
y |
x\right)\psi\left(y\right)dx,
where
m | |
T | |
y |
u\left(x\right)
m-1 | |
=\sum\limits | |
k=0 |
\sum\limits\left\vert
1 | |
\alpha! |
D\alphau\left(y\right)\left(x-y\right)\alpha
is the Taylor polynomial of degree at most
stylem-1
styleu
styley
stylex
style\psi\geq0
styleB
\intB\psidx=1.
Such function
style\psi
For more details and a tutorial treatment, see the monograph by Brenner and Scott.[3] The result can be extended to the case when the domain
style\Omega
This result follows immediately from the above lemma, and it is also called sometimes the Bramble–Hilbert lemma, for example by Ciarlet.[4] It is essentially Theorem 2 from.[1]
Lemma Suppose that
style\ell
m | |
styleW | |
p |
(\Omega)
style\left\Vert\ell\right\Vert
|
style\ell\left(v\right)=0
stylev\inPm-1
styleC=C\left(\Omega\right)
\left\vert\ell\left(u\right)\right\vert\leqC\left\Vert\ell\right\Vert
|
\left\vertu\right\vert
|
.