Brahmagupta polynomials are a class of polynomials associated with the Brahmagupa matrix which in turn is associated with the Brahmagupta's identity. The concept and terminology were introduced by E. R. Suryanarayan, University of Rhode Island, Kingston in a paper published in 1996.[1] [2] [3] These polynomials have several interesting properties and have found applications in tiling problems[4] and in the problem of finding Heronian triangles in which the lengths of the sides are consecutive integers.[5]
In algebra, Brahmagupta's identity says that, for given integer N, the product of two numbers of the form
x2-Ny2
2 | |
(x | |
1 |
-
2 | |
Ny | |
2 |
-
2) | |
Ny | |
2 |
=(x1x2+Ny1y
2 | |
2) |
-N(x1y2+x2y
2. | |
1) |
If, for an arbitrary real number
t
B(x,y)=\begin{bmatrix}x&y\ ty&x\end{bmatrix}
\detB(x1,y1)\detB(x2,y2)=\det(B(x1,y1)B(x2,y2))
B(x,y)
Let
B=B(x,y)
Bn
Bn=\begin{bmatrix}xn&yn\ tyn&xn\end{bmatrix}
xn
yn
x,y,t
\begin{alignat}{2} x1&=x&y1&=y\\ x2&=x2+ty2&y2&=2xy\\ x3&=x3+3txy2&y3&=3x2y+ty3\\ x4&=x4+6t2x2y2+t2y4 &y4&=4x3y+4txy3 \end{alignat}
A few elementary properties of the Brahmagupta polynomials are summarized here. More advanced properties are discussed in the paper by Suryanarayan.[1]
The polynomials
xn
yn
xn+1=xxn+tyyn
yn+1=xyn+yxn
xn+1=2xxn-(x2-ty
2)x | |
n-1 |
yn+1=2xyn-(x2-ty
2)y | |
n-1 |
x2n
2 | |
=x | |
n |
y2n=2xnyn
The eigenvalues of
B(x,y)
x\pmy\sqrt{t}
[1,\pm\sqrt{t}]T
B[1,\pm\sqrt{t}]T=(x\pmy\sqrt{t})[1,\pm\sqrt{t}]T
Bn[1,\pm\sqrt{t}]T=(x\pmy\sqrt{t})n[1,\pm\sqrt{t}]T
xn
yn
xn=\tfrac{1}{2}[(x+y\sqrt{t})n+(x-y\sqrt{t})n]
yn=\tfrac{1}{2\sqrt{t}}[(x+y\sqrt{t})n-(x-y\sqrt{t})n]
Expanding the powers in the above exact expressions using the binomial theorem and simplifying one gets the following expressions for
xn
yn
xn=xn+t{n\choose2}xn-2y2+t2{n\choose4}xn-4y4+ …
yn=nxn-1y+t{n\choose3}xn-3y3+t2{n\choose5}xn-5y5+ …
x=y=\tfrac{1}{2}
t=5
n>0
2yn=Fn
1,1,2,3,5,8,13,21,34,55,\ldots
2xn=Ln
2,1,3,4,7,11,18,29,47,76,123,\ldots
x=y=1
t=2
xn=1,1,3,7,17,41,99,239,577,\ldots
\sqrt{2}
yn=0,1,2,5,12,29,70,169,408,\ldots
xn
yn
\left(
\partial2 | |
\partialx2 |
-
1 | |
t |
\partial2 | |
\partialy2 |
\right)U=0