In mathematics, the following matrix was given by Indian mathematician Brahmagupta:[1]
B(x,y)=\begin{bmatrix} x&y\\ \pmty&\pmx\end{bmatrix}.
It satisfies
B(x1,y1)B(x2,y2)=B(x1x2\pmty1y2,x1y2\pmy1x2).
Powers of the matrix are defined by
Bn=\begin{bmatrix} x&y\\ ty&x\end{bmatrix}n=\begin{bmatrix} xn&yn\\ tyn&xn\end{bmatrix}\equivBn.
The
xn
yn
B-n=\begin{bmatrix} x&y\\ ty&x\end{bmatrix}-n=\begin{bmatrix} x-n&y-n\\ ty-n&x-n\end{bmatrix}\equivB-n.
. CRC Concise Encyclopedia of Mathematics . Eric W. Weisstein. 2003 . CRC Press . Florida . 1-58488-347-2 . 282.