Borel measure explained
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets).[1] Some authors require additional restrictions on the measure, as described below.
Formal definition
Let
be a
locally compact Hausdorff space, and let
be the smallest σ-algebra that contains the
open sets of
; this is known as the σ-algebra of
Borel sets. A
Borel measure is any measure
defined on the σ-algebra of Borel sets.
[2] A few authors require in addition that
is
locally finite, meaning that
for every
compact set
. If a Borel measure
is both
inner regular and outer regular, it is called a
regular Borel measure. If
is both inner regular, outer regular, and
locally finite, it is called a
Radon measure.
On the real line
with its usual topology is a locally compact Hausdorff space; hence we can define a Borel measure on it. In this case,
is the smallest σ-algebra that contains the open intervals of
. While there are many Borel measures
μ, the choice of Borel measure that assigns
for every half-open interval
is sometimes called "the" Borel measure on
. This measure turns out to be the restriction to the Borel σ-algebra of the
Lebesgue measure
, which is a
complete measure and is defined on the Lebesgue σ-algebra. The Lebesgue σ-algebra is actually the
completion of the Borel σ-algebra, which means that it is the smallest σ-algebra that contains all the Borel sets and can be equipped with a
complete measure. Also, the Borel measure and the Lebesgue measure coincide on the Borel sets (i.e.,
for every Borel measurable set, where
is the Borel measure described above). This idea extends to finite-dimensional spaces
(the
Cramér–Wold theorem, below) but does not hold, in general, for infinite-dimensional spaces.
Infinite-dimensional Lebesgue measures do not exist.
Product spaces
If X and Y are second-countable, Hausdorff topological spaces, then the set of Borel subsets
Bor\colonTop2CHaus\toMeas
from the
category of second-countable Hausdorff spaces to the category of
measurable spaces preserves finite
products.
Applications
Lebesgue–Stieltjes integral
See main article: Lebesgue–Stieltjes integration. The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.
Laplace transform
See main article: Bernstein's theorem on monotone functions. One can define the Laplace transform of a finite Borel measure μ on the real line by the Lebesgue integral
(l{L}\mu)(s)=\int[0,infty)e-std\mu(t).
An important special case is where μ is a probability measure or, even more specifically, the Dirac delta function. In operational calculus, the Laplace transform of a measure is often treated as though the measure came from a distribution function f. In that case, to avoid potential confusion, one often writes
where the lower limit of 0− is shorthand notation for
\lim\varepsilon\downarrow
This limit emphasizes that any point mass located at 0 is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the Laplace–Stieltjes transform.
Moment problem
See main article: Moment problem. One can define the moments of a finite Borel measure μ on the real line by the integral
For
(a,b)=(-infty,infty), (0,infty), (0,1)
these correspond to the
Hamburger moment problem, the
Stieltjes moment problem and the
Hausdorff moment problem, respectively. The question or problem to be solved is, given a collection of such moments, is there a corresponding measure? For the Hausdorff moment problem, the corresponding measure is unique. For the other variants, in general, there are an infinite number of distinct measures that give the same moments.
Hausdorff dimension and Frostman's lemma
See main article: Hausdorff dimension and Frostman lemma.
Given a Borel measure μ on a metric space X such that μ(X) > 0 and μ(B(x, r)) ≤ rs holds for some constant s > 0 and for every ball B(x, r) in X, then the Hausdorff dimension dimHaus(X) ≥ s. A partial converse is provided by the Frostman lemma:[4]
Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent:
- Hs(A) > 0, where Hs denotes the s-dimensional Hausdorff measure.
- There is an (unsigned) Borel measure μ satisfying μ(A) > 0, and such that
holds for all x ∈ Rn and r > 0.
Cramér–Wold theorem
See main article: Cramér–Wold theorem. The Cramér–Wold theorem in measure theory states that a Borel probability measure on
is uniquely determined by the totality of its one-dimensional projections.
[5] It is used as a method for proving joint convergence results. The theorem is named after
Harald Cramér and
Herman Ole Andreas Wold.
See also
Further reading
- Gaussian measure, a finite-dimensional Borel measure
- .
- Book: J. D. Pryce . Basic methods of functional analysis . Hutchinson University Library . . 1973 . 0-09-113411-0 . 217 .
- Book: Ransford, Thomas . Potential theory in the complex plane . London Mathematical Society Student Texts . 28 . Cambridge . . 1995 . 0-521-46654-7 . 0828.31001 . 209–218 .
External links
Notes and References
- D. H. Fremlin, 2000. Measure Theory . Torres Fremlin.
- Book: Alan J. Weir . General integration and measure . . 1974 . 0-521-29715-X . 158–184 .
- [Vladimir I. Bogachev]
- Book: Rogers, C. A.. Hausdorff measures. Third. Cambridge Mathematical Library. Cambridge University Press. Cambridge. 1998. xxx+195. 0-521-62491-6.
- K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.