Bonse's inequality explained

In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pnpn+1 are the smallest n + 1 prime numbers and n ≥ 4, then

pn\#=p1pn>

2.
p
n+1
(the middle product is short-hand for the primorial

pn\#

of pn)

Mathematician Denis Hanson showed an upper bound where

n\#\leq3n

.[2]

See also

References

Notes and References

  1. H. . Bonse . Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung . Archiv der Mathematik und Physik . 3 . 12 . 1907 . 292 - 295 .
  2. Hanson . Denis . March 1972 . On the Product of the Primes . . 15 . 1 . 33–37 . 10.4153/cmb-1972-007-7. free . 0008-4395.