Bonse's inequality explained
In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pn, pn+1 are the smallest n + 1 prime numbers and n ≥ 4, then
(the middle product is short-hand for the
primorial
of
pn)
Mathematician Denis Hanson showed an upper bound where
.
[2] See also
References
- Book: Uspensky, J. V. . M. A. . Heaslet . Elementary Number Theory . McGraw Hill . New York . 1939 . 87 .
Notes and References
- H. . Bonse . Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung . Archiv der Mathematik und Physik . 3 . 12 . 1907 . 292 - 295 .
- Hanson . Denis . March 1972 . On the Product of the Primes . . 15 . 1 . 33–37 . 10.4153/cmb-1972-007-7. free . 0008-4395.