The Boneh–Franklin scheme is an identity-based encryption system proposed by Dan Boneh and Matthew K. Franklin in 2001.[1] This article refers to the protocol version called BasicIdent. It is an application of pairings (Weil pairing) over elliptic curves and finite fields.
As the scheme is based upon pairings, all computations are performed in two groups,
styleG1
styleG2
For
styleG1
stylep
stylep\equiv2\mod3
styleE:y2=x3+1
styleZ/pZ
style4a3+27b2=27=33
style0
stylep=3
Let
styleq>3
stylep+1
styleE
styleP\inE
styleq
styleG1
styleP
style\left\{nP\|n\in\left\{0,\ldots,q-1\right\}\right\}
styleG2
styleq
styleGF\left(p2\right)*
styleG1
styleE
styleG2
styleGF(p2)*
The public key generator (PKG) chooses:
styleG1
styleP
styleG2
styleq
stylek
stylee
styleKm=s\in
* | |
Z | |
q |
styleKpub=sP
styleH1:\left\{0,1\right\}* →
* | |
G | |
1 |
styleH2:G2 → \left\{0,1\right\}n
stylen
stylel{M}=\left\{0,1\right\}n,l{C}=
* | |
G | |
1 |
x \left\{0,1\right\}n
To create the public key for
styleID\in\left\{0,1\right\}*
styleQID=H1\left(ID\right)
styledID=sQID
Given
stylem\inl{M}
stylec
styleQID=H1\left(ID\right)\in
* | |
G | |
1 |
styler\in
* | |
Z | |
q |
stylegID=e\left(QID,Kpub\right)\inG2
stylec=\left(rP,m ⊕ H2\left(g
r\right)\right) | |
ID |
Note that
styleKpub
Given
stylec=\left(u,v\right)\inl{C}
stylem=v ⊕ H2\left(e\left(dID,u\right)\right)
The primary step in both encryption and decryption is to employ the pairing and
styleH2
The encrypting entity uses
styleH2\left(g
r\right) | |
ID |
styleH2\left(e\left(dID,u\right)\right)
\begin{align} H2\left(e\left(dID,u\right)\right)&=H2\left(e\left(sQID,rP\right)\right)\\ &=H2\left(e\left(QID,P\right)rs\right)\\ &=H2\left(e\left(QID,sP\right)r\right)\\ &=H2\left(e\left(QID,Kpub\right)r\right)\\ &=H2\left(
r | |
g | |
ID |
\right)\\ \end{align}
The security of the scheme depends on the hardness of the bilinear Diffie-Hellman problem (BDH) for the groups used. It has been proved that in a random-oracle model, the protocol is semantically secure under the BDH assumption.
BasicIdent is not chosen ciphertext secure. However, there is a universal transformation method due to Fujisaki and Okamoto[2] that allows for conversion to a scheme having this property called FullIdent.