Bohr radius | |
Labelstyle: | font-weight:normal |
Label1: | Symbol |
Data1: | or |
Label2: | Named after |
Data2: | Niels Bohr |
Header3: | Approximate values (to three significant digits) |
Label4: | SI units |
Data4: |
The Bohr radius is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is [1]
The Bohr radius is defined as[2] where
\varepsilon0
\hbar
me
e
c
\alpha
The CODATA value of the Bohr radius (in SI units) is
In the Bohr model for atomic structure, put forward by Niels Bohr in 1913, electrons orbit a central nucleus under electrostatic attraction. The original derivation posited that electrons have orbital angular momentum in integer multiples of the reduced Planck constant, which successfully matched the observation of discrete energy levels in emission spectra, along with predicting a fixed radius for each of these levels. In the simplest atom, hydrogen, a single electron orbits the nucleus, and its smallest possible orbit, with the lowest energy, has an orbital radius almost equal to the Bohr radius. (It is not exactly the Bohr radius due to the reduced mass effect. They differ by about 0.05%.)
The Bohr model of the atom was superseded by an electron probability cloud adhering to the Schrödinger equation as published in 1926. This is further complicated by spin and quantum vacuum effects to produce fine structure and hyperfine structure. Nevertheless, the Bohr radius formula remains central in atomic physics calculations, due to its simple relationship with fundamental constants (this is why it is defined using the true electron mass rather than the reduced mass, as mentioned above). As such, it became the unit of length in atomic units.
In Schrödinger's quantum-mechanical theory of the hydrogen atom, the Bohr radius is the value of the radial coordinate for which the radial probability density of the electron position is highest. The expected value of the radial distance of the electron, by contrast, is .[3]
The Bohr radius is one of a trio of related units of length, the other two being the reduced Compton wavelength of the electron (
λe/2\pi
re
\alpha
re=\alpha
λe | |
2\pi |
=\alpha2a0.
The Bohr radius including the effect of reduced mass in the hydrogen atom is given by
* | |
a | |
0 |
=
me | |
\mu |
a0,
mp
* | |
a | |
0 |
≈ 1.00054a0 ≈ 5.2946541 x 10-11
This result can be generalized to other systems, such as positronium (an electron orbiting a positron) and muonium (an electron orbiting an anti-muon) by using the reduced mass of the system and considering the possible change in charge. Typically, Bohr model relations (radius, energy, etc.) can be easily modified for these exotic systems (up to lowest order) by simply replacing the electron mass with the reduced mass for the system (as well as adjusting the charge when appropriate). For example, the radius of positronium is approximately
2a0
\mu | |
e-,e+ |
=me/2
A hydrogen-like atom will have a Bohr radius which primarily scales as
rZ=a0/Z
Z
\mu
me
rZ,\mu =
me | |
\mu |
a0 | |
Z |
.
A table of approximate relationships is given below.
System | Radius | |
---|---|---|
1.00054a0 | ||
2a0 | ||
1.0048a0 | ||
a0/2 | ||
a0/3 |