Bogdanov map explained

In dynamical systems theory, the Bogdanov map is a chaotic 2D map related to the Bogdanov–Takens bifurcation. It is given by the transformation:

\begin{cases} xn+1=xn+yn+1\\ yn+1=yn+\epsilonyn+kxn(xn-1)+\muxnyn \end{cases}

The Bogdanov map is named after Rifkat Bogdanov.

See also

References

External links