In mathematics, the Bockstein spectral sequence is a spectral sequence relating the homology with mod p coefficients and the homology reduced mod p. It is named after Meyer Bockstein.
Let C be a chain complex of torsion-free abelian groups and p a prime number. Then we have the exact sequence:
0\longrightarrowC\overset{p}\longrightarrowC\overset{modp}\longrightarrowC ⊗ \Z/p\longrightarrow0.
Taking integral homology H, we get the exact couple of "doubly graded" abelian groups:
H*(C)\overset{i=p}\longrightarrowH*(C)\overset{j}\longrightarrowH*(C ⊗ \Z/p)\overset{k}\longrightarrow.
where the grading goes:
H*(C)s,t=Hs+t(C)
H*(C ⊗ \Z/p),\degi=(1,-1),\degj=(0,0),\degk=(-1,0).
This gives the first page of the spectral sequence: we take
1 | |
E | |
s,t |
=Hs+t(C ⊗ \Z/p)
{}1d=j\circk
Dr=pr-1H*(C)
Dr\overset{i=p}\longrightarrowDr\overset{{}rj}\longrightarrowEr\overset{k}\longrightarrow
where
{}rj=(modp)\circp-{r+1
\deg({}rj)=(-(r-1),r-1)
r | |
D | |
n |
⊗ -
0\longrightarrow\Z\overset{p}\longrightarrow\Z\longrightarrow\Z/p\longrightarrow0,
we get:
0\longrightarrow
\Z | |
\operatorname{Tor} | |
1 |
r, | |
(D | |
n |
\Z/p)\longrightarrow
r | |
D | |
n |
\overset{p}\longrightarrow
r | |
D | |
n |
\longrightarrow
r | |
D | |
n |
⊗ \Z/p\longrightarrow0
This tells the kernel and cokernel of
r | |
D | |
n |
\overset{p}\longrightarrow
r | |
D | |
n |
0\longrightarrow(pr-1Hn(C)) ⊗ \Z/p\longrightarrow
r | |
E | |
n,0 |
\longrightarrow\operatorname{Tor}(pr-1Hn-1(C),\Z/p)\longrightarrow0
When
r=1
Assume the abelian group
H*(C)
\Z/ps
H*(C)
r\toinfty
Einfty
(freepartofH*(C)) ⊗ \Z/p