Block LU decomposition explained

In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.

Block LDU decomposition

\begin{pmatrix} A&B\\ C&D\end{pmatrix} = \begin{pmatrix} I&0\\ CA-1&I \end{pmatrix} \begin{pmatrix} A&0\\ 0&D-CA-1B \end{pmatrix} \begin{pmatrix} I&A-1B\\ 0&I \end{pmatrix}

Block Cholesky decomposition

Consider a block matrix:

\begin{pmatrix} A&B\\ C&D\end{pmatrix} = \begin{pmatrix} I\\ CA-1\end{pmatrix} A \begin{pmatrix} I&A-1B \end{pmatrix} + \begin{pmatrix} 0&0\\ 0&D-CA-1B \end{pmatrix},

where the matrix

\begin{matrix}A\end{matrix}

is assumed to be non-singular,

\begin{matrix}I\end{matrix}

is an identity matrix with proper dimension, and

\begin{matrix}0\end{matrix}

is a matrix whose elements are all zero.

We can also rewrite the above equation using the half matrices:

\begin{pmatrix} A&B\\ C&D

1
2
\end{pmatrix} = \begin{pmatrix} A

\\ C

-*
2
A
*
2
\end{pmatrix} \begin{pmatrix} A

&

-1
2
A

B \end{pmatrix} + \begin{pmatrix} 0&0\\ 0&

1
2
Q

\end{pmatrix} \begin{pmatrix} 0&0\\ 0&

*
2
Q

\end{pmatrix} ,

where the Schur complement of

\begin{matrix}A\end{matrix}

in the block matrix is defined by

\begin{matrix} Q=D-CA-1B \end{matrix}

and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition.The half matrices satisfy that
1
2
\begin{matrix} A
*
2
A
1
2
=A; \end{matrix}    \begin{matrix} A
-1
2
A
-*
2
=I; \end{matrix}    \begin{matrix} A
*
2
A
1
2
=I; \end{matrix}    \begin{matrix} Q
*
2
Q

=Q. \end{matrix}

Thus, we have

\begin{pmatrix} A&B\\ C&D\end{pmatrix} = LU,

where

LU

1
2
= \begin{pmatrix} A

&0\\ C

-*
2
A

&

*
2
0 \end{pmatrix} \begin{pmatrix} A

&

-1
2
A

B\\ 0&0 \end{pmatrix} + \begin{pmatrix} 0&0\\ 0&

1
2
Q

\end{pmatrix} \begin{pmatrix} 0&0\\ 0&

*
2
Q

\end{pmatrix}.

The matrix

\begin{matrix}LU\end{matrix}

can be decomposed in an algebraic manner into

L=

1
2
\begin{pmatrix} A

&0\\ C

-*
2
A

&

1
2
Q

\end{pmatrix} ~~and~~ U

*
2
= \begin{pmatrix} A

&

-1
2
A

B\\ 0&

*
2
Q

\end{pmatrix}.

See also