Vehicle blind spot explained

A blind spot in a vehicle or vehicle blind spot is an area around the vehicle that cannot be directly seen by the driver while at the controls, under existing circumstances.[1] In transport, driver visibility is the maximum distance at which the driver of a vehicle can see and identify prominent objects around the vehicle.[2] Visibility is primarily determined by weather conditions (see visibility) and by a vehicle's design.[3] The parts of a vehicle that influence visibility include the windshield, the dashboard and the pillars. Good driver visibility is essential to safe road traffic.

Conditions for blind spots

Blind spots exist in a wide range of vehicles: aircraft, cars, buses, trucks, agricultural equipment, heavy equipment, boats, ships, trams and trains. Blind spots may occur in the front of the driver when the A-pillar (also called the windshield pillar), side-view mirror, or interior rear-view mirror block a driver's view of the road. Behind the driver, cargo, headrests, and additional pillars may reduce visibility. Proper adjusting of mirrors and using other technical solutions can eliminate or alleviate vehicle blind spots.

A no zone is one of several areas around a large truck, where the truck driver cannot see.[4] Collisions frequently occur in no zones.

A blind zone is one of several areas around heavier rolling stocks (locomotives and multiple units), where the train driver cannot see. Accidents frequently occur in blind zones.

Adjusting mirrors to reduce side blind spots

The side view mirrors of a car should be adjusted to reduce blind spots on the sides.[5] [6] [7] [8] The method is frequently overlooked in driver's education classes and takes some getting used to.[8] Calculated elimination of blind spots by properly trained drivers is inexpensive and obviates the need for costly technological solutions to that problem, provided drivers take the time to set up and use their mirrors effectively.[6] [9] The arrangementpointing the side-view mirrors substantially outboard in a fixed mechanical formulais relatively simple to achieve. Still, it takes some knowledgeable effort and getting used to it. It is reputed to be a lifesaver.[7] [5] [6] [9] [8] [10]

However, one source considers that method a driving mistake and claims it is even more dangerous than not using it, because it creates other blind spots directly behind the vehiclenine reasons are listed, e.g., when backing upwhich are impossible to eliminate by a "shoulder check".[11] [12]

Rearward invisibility is an entirely different matter. The area directly behind vehicles is the source of backup collisions, particularly involving pedestrians, children, and objects directly aft of a vehicle. That area has been called a "killing zone".[12] [13] These problems are the object of several technological solutions, including (in rough order of technological complexity, simplest first): rear-view mirror, side-view mirror, Fresnel lens, sonar, parking sensors, and backup camera. A similar problem attaches to positions left and right of a vehicle's rear bumper as the driver attempts to back out of a parking space. Specially designed cross-traffic alert warning systems have been developed to address these.[6] [14] [15]

Motor vehicles

As one is driving an automobile, blind spots are the areas of the road that cannot be seen while looking forward or through either the rear-view or side mirrors (expecting that the side mirrors are properly adjusted on a passenger auto see above). The most common are the rear quarter blind spots, areas towards the rear of the vehicle on both sides. Vehicles in the adjacent lanes of the road that fall into these blind spots may not be visible using only the car's mirrors. Rear quarter blind spots can be:

Other areas that are sometimes called blind spots are those that are too low to see behind, in front, or to the sides of a vehicle, especially those with a high seating point.[16]

Forward visibility

This diagram shows the blocked view in a horizontal plane in front of the driver. The front-end blind spots caused by this can create problems in traffic situations, such as in roundabouts, intersections, and road crossings. Front-end blind spots are influenced by the following design criteria:

Types of A-pillar design

Most passenger cars have a diagonal pillar in the side view. The angle between the horizon and A-pillar is approximately 40 degrees with a straight pillar that is not too thick. This gives the car a strong, aerodynamic body with an adequately sized front door.

Panoramic vertical A-pillars

The sides of a panoramic windshield are curved, which makes it possible to design vertical A-pillars that give the driver maximum forward visibility. However, it is impossible to design an aerodynamic small car with a vertical A-pillar because the more vertical the A-pillar is, the less space the door opening has, and the greater frontal area and coefficient of drag the vehicle will have.

Examples of cars with an almost vertical A-pillar:

Flat A-pillar design

Some modern car designs have an extremely flat A-pillar angle with the horizon. For example, the Pontiac Firebird and Chevrolet Camaro from 1993 to 2002 had a windshield angle of 68° with the vertical, which equals just 22° with the horizon.[17]

A flatter A-pillar's advantages include reducing the overall drag coefficient and making the car body stronger in a frontal collision, at the expense of reducing driver visibility in a 180° field of view from left to right. A flatter A-pillar (and therefore windscreen) is also a factor when calculating the effects of a collision with a pedestrian. In general, a flatter angle will result in a more gentle impact, directing the pedestrian "up and over" rather than directly into the windscreen. This is particularly true for cars like the Mercedes-Benz A-Class which also have a low angled engine cover.

Other disadvantages of a flat windshield angle

Height of the driver

Driver height can also affect visibility.

An A-pillar that is split up and has a small triangle window (Front Quarter glass) can give short driver visibility problems.In some cars, the windshield is fillet with the roof-line with a big radius.A fillet round A-pillar can give a tall driver visibility problems. Also sometimes the A-pillar can block the driver from seeing motorcyclists.

Also, the B-pillar can block the vision of a tall driver in small 4-door cars.

A driver may reduce the size of a blind spot or eliminate it by turning their head in the direction of the obstruction. This allows the driver to see better around the obstruction and allows the driver better depth perception.

Visibility in a convertible

Because there is no roof connection between the A- and B-pillars, the A-pillars of a convertible automobile have to be stronger and even thicker.

However, with the top down there are no B or C pillars, improving visibility behind the driver.

Windshield reflections

Dashboard reflection

It is best if the dashboard has a non-reflecting dark-colored surface.[18]

A small dashboard gives some reflection on the lower part of the windshield.

A big dashboard can give a reflection on eye height.

A-pillar reflection

It is best if the inside of the A-pillar has a non-reflecting dark-colored surface.[19]

If the side of the window is curved there is less A-pillar reflection.[20]

Light through roof reflection

Some new model cars have a very big sunroof. Sometimes the sunlight through the roof lights up the dashboard and gives a reflection in the windshield.

Other automobile design factors

Other design factors may prevent a manufacturer from maximizing visibility. These include safety, as narrower pillars cannot be made strong as easily as thicker pillars, and size restraints about aerodynamics, as taller, more vertical windshields create additional drag and reduce fuel efficiency. They also include fashion and cost, whereby design and appearance considerations can be deemed preeminent.

Side radar systems offer better performance and also warn of fast-approaching vehicles entering the blind spot.

Trams and trains

Blind spots also exist around trams (streetcars/trolleys) and trains (locomotives with railway carriages and multiple units).[21] [22] [23] Heavier rolling stocks can have up to several meters of blind spot. This is generally known as the dead visual range of a train. To address this, cameras are sometimes placed around the train driver's cab to cover the missing field of view during coupling/decoupling between locomotives and railcars, multiple units, special railway equipments or another locomotives.

Agricultural equipment

Blind spots also exist around agricultural equipment (utility tractors, combine harvesters, etc.).[24]

Heavy equipment

Blind spots also exist around heavy equipment (excavators, bulldozers, wheel loaders, cranes, etc.).[25]

Boats and ships

Blind spots also exist in front of boats and ships.[26] When the boat accelerates, the bow rises, increasing the size of the blind spot. Large vessels can have up to several hundreds of meters of blind spots. This is generally known as the dead visual range of a ship. To address this, cameras are sometimes placed in the front of the vessel to cover the missing field of view.

Blind spots exist where areas behind the sail are obscured from the view of a helmsman on a sailboat or windsurfer. This is especially true when they are heeled over; consequently, transparent windows are sometimes sewn into the sails.

Aircraft

Blind spots also exist around aircraft (helicopters, airships, airplanes, gliders).[27] When the aircraft (airplane) accelerates for take off, the size of the blind spot below fuselage increases. Heavier aircraft can have up to several meters of blind spots. This is generally known as the dead visual range of an aircraft. To address this, cameras are sometimes placed in the front of the aircraft to cover the missing field of view.

See also

External links

Notes and References

  1. Web site: Blind spot definition . Thefreedictionary.com . 2011-11-13.
  2. http://www.op.dlr.de/ne-oe/ir/fasimod.html Fasimod
  3. Web site: Wide-angle driver visibility and safety innovations distinguish Volvo BeeVan Truck Concept . Gizmag.com . 2007-03-09 . 2011-11-13.
  4. Web site: California Driver Handbook - Sharing the Road—Trucker's Blind Spots - The "No Zone" . 2017 . State of California—Department of Motor Vehicles . October 15, 2017.
  5. Web site: How To Eliminate The Dreaded "Blind Spot" . August 9, 2013., which includes good illustrations of vision zones involved in proper adjustment.
  6. News: Are Blind Spots a Myth? . August 18, 2009 . Christopher . Jensen . The New York Times . August 9, 2013.
  7. The Geometry of Automotive Rearview Mirrors - Why Blind Zones Exist and Strategies to Overcome Them SAE Technical Paper 950601 . Platzer . George . Society of Automotive Engineers . Detroit, Michigan . 10.4271/950601 . February 1, 1995 . August 9, 2013.
  8. Adjust Your Car Mirrors Properly To Avoid Accidents . Melanie . Pinola . Car and Driver . December 6, 2011 . August 29, 2014.
  9. How to Adjust Your Mirrors to Avoid Blind Spots . Car and Driver . Tony . Quiroga . Chris . Philpot . March 2010 . August 9, 2013.
  10. Web site: A Great New Way to Set Your Side View Mirrors . Car Talk . Tom . Magliozzi . Tom Magliozzi. Ray . Magliozzi . Ray Magliozzi . August 9, 2013.
  11. Web site: Setting Outside Mirrors to the Correct Angle . Driving Myths and Misconceptions . Eddie . Wren . 2003 . January 14, 2015.
  12. State Drivers' Manuals Can Kill Your Kids, SAE Technical Paper 2007-01-0445 . Society of Automotive Engineers . April 16, 2007 . 10.4271/2007-01-0445 . Eddie . Wren . September 12, 2021.
  13. News: The danger of blind zones: The area behind your vehicle can be a killing zone . Consumer Reports . April 2014 . September 12, 2021.
  14. Web site: See It, Hear It, Feel It: Ford Seeks Most Effective Driver Warnings for Active Safety Technology. Increased warnings indicate potentially hazardous lane changes . Ford Motor Company . Gale, Cengage Learning/Free Library . 2008 . August 11, 2013 . July 30, 2017 . https://web.archive.org/web/20170730065001/https://www.thefreelibrary.com/See+It,+Hear+It,+Feel+It:+Ford+Seeks+Most+Effective+Driver+Warnings...-a0177931821 . dead .
  15. http://www.tricityinsurancenews.com/archives/automobile-blind-spot-monitoring-system/ Automobile Blind-Spot Monitoring System, Tri-City Insurance News, January 27, 2006
  16. http://www.smartmicro.de/index.php?option=com_content&view=article&id=60&Itemid=68 smart micro – Blind Spot Detection
  17. Book: Camaro - Steve Statham - Google Books . 9781610608381 . 2011-11-13. Statham . Steve . 1998 . MotorBooks International .
  18. http://esvc000873.wic017u.server-web.com/iPublish/archives/1/080.010.020/83/fs_nx_general_pack_8.pdf NX General PackagingIntelligent Tools for Automotive Mechanical and Occupancy Packaging
  19. Web site: Blindspots and Mirrors . Smart Learner Driving School . 2013-01-20 . 2014-02-10 . https://web.archive.org/web/20140911030938/http://smartlearner.org.uk/blind-spots-use-of-mirrors/ . 2014-09-11 . dead .
  20. Blind spot offenders named . Auto Express . 2006-08-07 . 2011-11-13.
  21. Subharthi Banerjee. Jose Santos. Michael Hempel. Pejman Ghasemzadeh. Hamid Sharif. 14 August 2019 . A Novel Method of Near-Miss Event Detection with Software Defined RADAR in Improving Railyard Safety . Safety . 5 . 3 . 55 . 10.3390/safety5030055 . 2313-576X . free.
  22. Web site: Avante Grade Crossing Visibility and Blind Spot Visibility Systems. Avante International Technology . 12 January 2022.
  23. Web site: Long Range Visual and Digital Rail Visibility with Optical-IR-Radar Technologies. Avante International Technology . 4 October 2022.
  24. Web site: Learn about the dangers of blind spots. Farms.com. 26 July 2019. 23 October 2021.
  25. Web site: Highway Work Zone Safety Construction Equipment Visibility . cdc.gov . 2 November 2021 . 15 November 2021.
  26. Web site: State v. Warren Haven . State of Maine . 2002-02-28 . 2009-10-06 . https://web.archive.org/web/20110716102509/http://www.courts.state.me.us/court_info/opinions/documents/02me38ha.htm . 2011-07-16 . dead.
  27. Web site: The Dangers of the Blind Spot in Aviation . Atlas Blue . 5 October 2023.