The Blackwell-Girshick equation is an equation in probability theory that allows for the calculation of the variance of random sums of random variables.[1] It is the equivalent of Wald's lemma for the expectation of composite distributions.
It is named after David Blackwell and Meyer Abraham Girshick.
Let
N
Z\ge
X1,X2,X3,...
N
Xi
N
NX | |
Y:=\sum | |
i |
2+\operatorname{E}(N)\operatorname{Var}(X | |
\operatorname{Var}(Y)=\operatorname{Var}(N)\operatorname{E}(X | |
1) |
The Blackwell-Girshick equation can be derived using conditional variance and variance decomposition.If the
Xi
For each
n\ge0
\chin
N
n
Yn:=X1+ … +Xn
\begin{align}\operatorname{E}(Y2)&=
infty | |
\sum | |
n=0 |
\operatorname{E}(\chin
2)\\ &= | |
Y | |
n |
infty | |
\sum | |
n=0 |
\operatorname{P}(N=n)
2)\\ &= | |
\operatorname{E}(Y | |
n |
infty\operatorname{P}(N=n) | |
\sum | |
n=0 |
(\operatorname{Var}(Yn)+\operatorname{E}(Y
2)\\ &= | |
n) |
infty\operatorname{P}(N=n) | |
\sum | |
n=0 |
(n
2)\\ &= | |
\operatorname{Var}(X | |
1) |
\operatorname{E}(N)\operatorname{Var}(X1)+\operatorname{E}(N2)
2. \end{align} | |
\operatorname{E}(X | |
1) |
\operatorname{E}(Y)=\operatorname{E}(N)\operatorname{E}(X1)
\begin{align}\operatorname{Var}(Y)&=\operatorname{E}(Y2)-\operatorname{E}(Y)2\\ &=\operatorname{E}(N)\operatorname{Var}(X1)+\operatorname{E}(N2)
2 | |
\operatorname{E}(X | |
1) |
-\operatorname{E}(N)2
2 | |
\operatorname{E}(X | |
1) |
\\ &=\operatorname{E}(N)\operatorname{Var}(X1)+\operatorname{Var}(N)
2, \end{align} | |
\operatorname{E}(X | |
1) |
Let
N
λ
X1,X2,...
p
Y
λp
λp
N
λ
Xi
p
p(1-p)
\operatorname{Var}(Y)=λp2+λp(1-p)=λp
The Blackwell-Girshick equation is used in actuarial mathematics to calculate the variance of composite distributions, such as the compound Poisson distribution. Wald's equation provides similar statements about the expectation of composite distributions.