In mathematics, a bitopological space is a set endowed with two topologies. Typically, if the set is
X
\sigma
\tau
(X,\sigma,\tau)
\scriptstylef:X\toX'
\scriptstyle(X,\tau1,\tau2)
\scriptstyle(X',\tau1',\tau2')
\scriptstylef
\scriptstyle(X,\tau1)
\scriptstyle(X',\tau1')
\scriptstyle(X,\tau2)
\scriptstyle(X',\tau2')
Corresponding to well-known properties of topological spaces, there are versions for bitopological spaces.
\scriptstyle(X,\tau1,\tau2)
\scriptstyle\{Ui\midi\inI\}
\scriptstyleX
\scriptstyleUi\in\tau1\cup\tau2
\scriptstyle\{Ui\midi\inI\}
\tau1
\tau2
\scriptstyle(X,\tau1,\tau2)
\scriptstylex,y\inX
\scriptstyleU1\in\tau1
\scriptstyleU2\in\tau2
\scriptstylex\inU1
\scriptstyley\inU2
\scriptstyle(X,\tau1,\tau2)
\scriptstyle(X,\tau1)
\scriptstyle(X,\tau2)
\scriptstyle(X,\tau1)
\scriptstyle(X,\tau2)
\scriptstyle(X,\tau1)
\scriptstyle(X,\tau2)
\scriptstyle(X,\sigma,\tau)
\scriptstyleF\sigma
\scriptstyle\sigma
\scriptstyleF\tau
\scriptstyle\tau
\scriptstyleG\sigma
\scriptstyle\sigma
\scriptstyleG\tau
\scriptstyle\tau
\scriptstyleF\sigma\subseteqG\tau
\scriptstyleF\tau\subseteqG\sigma
\scriptstyleG\sigma\capG\tau=\empty.