Bisymmetric matrix explained

In mathematics, a bisymmetric matrix is a square matrix that is symmetric about both of its main diagonals. More precisely, an matrix is bisymmetric if it satisfies both (it is its own transpose), and, where is the exchange matrix.

For example, any matrix of the form

\begina & b & c & d & e \\b & f & g & h & d \\c & g & i & g & c \\d & h & g & f & b \\e & d & c & b & a \end= \begina_ & a_ & a_ & a_ & a_ \\a_ & a_ & a_ & a_ & a_ \\a_ & a_ & a_ & a_ & a_ \\a_ & a_ & a_ & a_ & a_ \\a_ & a_ & a_ & a_ & a_\end

is bisymmetric. The associated

5 x 5

exchange matrix for this example is

J5=\begin{bmatrix} 0&0&0&0&1\\ 0&0&0&1&0\\ 0&0&1&0&0\\ 0&1&0&0&0\\ 1&0&0&0&0 \end{bmatrix}

Properties

Notes and References

  1. Tao . David . Yasuda, Mark . A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices . SIAM Journal on Matrix Analysis and Applications . 23 . 3 . 885–895 . 2002 . 10.1137/S0895479801386730 .
  2. Yasuda . Mark . Some properties of commuting and anti-commuting m-involutions . Acta Mathematica Scientia . 32 . 2 . 631–644 . 2012. 10.1016/S0252-9602(12)60044-7.
  3. Wang. Yanfeng. Lü. Feng. Lü. Weiran. 2018-01-10. The inverse of bisymmetric matrices. Linear and Multilinear Algebra. 67. 3. 479–489. 10.1080/03081087.2017.1422688. 125163794. 0308-1087.