Bismuth selenide explained

Bismuth selenide is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

Properties

Bismuth selenide is a semiconductor and a thermoelectric material.[1] While stoichiometric bismuth selenide should be a semiconductor with a gap of 0.3 eV, naturally occurring selenium vacancies act as electron donors, so Bi2Se3 is intrinsically n-type.[2] [3] [4]

Bismuth selenide has a topologically insulating ground-state.[5] Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators,[6] [7] [8] which later became the subject of world-wide scientific research.[9] [10] [11] [12]

Bismuth selenide is a van der Waals material consisting of covalently bound five-atom layers (quintuple layers) which are held together by van der Waals interactions[13] and spin-orbit coupling effects.[14] Although the (0001) surface is chemically inert (mostly due to the inert-pair effect of Bi), there are metallic surface states, protected by the non-trivial topology of the bulk. For this reason, the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research. For instance, different phases of antimony layers can be grown on Bi2Se3,[15] [16] by means of which topological pn-junctions can be realised.[17] More intriguingly, Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non-trivial topological properties of the Bi2Se3 substrate.[18] [19]

Production

Although bismuth selenide occurs naturally (as the mineral guanajuatite) at the Santa Catarina Mine in Guanajuato, Mexico[20] as well as some sites in the United States and Europe,[21] such deposits are rare and contain a significant level of sulfur atoms as an impurity. For this reason, most bismuth selenide used in research into potential commercial applications is synthesized. Commercially-produced samples are available for use in research, but the concentration of selenium vacancies is heavily dependent upon growth conditions,[22] [23] and so bismuth selenide used for research is often synthesized in the laboratory.

A stoichiometric mixture of elemental bismuth and selenium, when heated above the melting points of these elements in the absence of air, will become a liquid that freezes to crystalline .[24] Large single crystals of bismuth selenide can be prepared by the Bridgman–Stockbarger method.[25]

See also

Notes and References

  1. Mishra . S K . S Satpathy . O Jepsen . 1997-01-13 . Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide . . 9 . 2 . 461–470 . 1997JPCM....9..461M . 10.1088/0953-8984/9/2/014 . 0953-8984 . free . 10355/9466 . 250922249.
  2. Analytis . James G. . Chu . Jiun-Haw . Chen . Yulin . Corredor . Felipe . McDonald . Ross D. . Shen . Z. X. . Fisher . Ian R. . 2010-05-05 . Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements . Physical Review B . en . 81 . 20 . 205407 . 10.1103/PhysRevB.81.205407 . 1001.4050 . 2010PhRvB..81t5407A . 118322170 . 1098-0121.
  3. Xia . Y . Qian . D . Hsieh . D . Wray . L . Pal . A . Lin . H . Bansil . A . Grauer . D . Hor . Y. S . Cava . R. J . Hasan . M. Z . 2009 . Observation of a large-gap topological-insulator class with a single Dirac cone on the surface . Nature Physics . 5 . 6 . 398–402 . 2009NatPh...5..398X . 10.1038/nphys1274 . free. 0908.3513 .
  4. Hor . Y. S. . A. Richardella . P. Roushan . Y. Xia . J. G. Checkelsky . A. Yazdani . M. Z. Hasan . N. P. Ong . R. J. Cava . 2009-05-21 . p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications . . 79 . 19 . 195208 . 0903.4406 . 2009PhRvB..79s5208H . 10.1103/PhysRevB.79.195208 . 119217126.
  5. Xia . Y. . Qian . D. . Hsieh . D. . Wray . L. . Pal . A. . Lin . H. . Bansil . A. . Grauer . D. . Hor . Y. S. . Cava . R. J. . Hasan . M. Zahid . 2009 . Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface . Nature Physics . 0908.3513 . 10.1038/nphys1274 . 1745-2473 . 119195663.
  6. Hsieh . D. . Y. Xia . D. Qian . L. Wray . J. H. Dil . F. Meier . J. Osterwalder . L. Patthey . J. G. Checkelsky . N. P. Ong . A. V. Fedorov . H. Lin . A. Bansil . D. Grauer . Y. S. Hor . 2009 . A tunable topological insulator in the spin helical Dirac transport regime . . 460 . 7259 . 1101–1105 . 1001.1590 . 2009Natur.460.1101H . 10.1038/nature08234 . 0028-0836 . 19620959 . R. J. Cava . M. Z. Hasan . 4369601.
  7. Hasan . M. Zahid . Moore . Joel E. . 2011-02-08 . Three-Dimensional Topological Insulators . Annual Review of Condensed Matter Physics . 2 . 1 . 55–78 . 1011.5462 . 2011ARCMP...2...55H . 10.1146/annurev-conmatphys-062910-140432 . 1947-5454 . 11516573.
  8. Xu . Yang . Miotkowski . Ireneusz . Liu . Chang . Tian . Jifa . Nam . Hyoungdo . Alidoust . Nasser . Hu . Jiuning . Shih . Chih-Kang . Hasan . M. Zahid . Chen . Yong P. . 2014 . Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator . Nature Physics . en . 10 . 12 . 956–963 . 1409.3778 . 2014NatPh..10..956X . 10.1038/nphys3140 . 1745-2481 . 51843826.
  9. Hasan . M. Z. . Kane . C. L. . 2010-11-08 . Colloquium: Topological insulators . Reviews of Modern Physics . 82 . 4 . 3045–3067 . 1002.3895 . 2010RvMP...82.3045H . 10.1103/RevModPhys.82.3045 . 16066223.
  10. Web site: The Strange Topology That Is Reshaping Physics . 2020-04-22 . Scientific American . en.
  11. Web site: Welcome to the Weird Mathematical World of Topology . 2020-04-22 . Discover Magazine . en.
  12. Ornes . Stephen . 2016-09-13 . Topological insulators promise computing advances, insights into matter itself . Proceedings of the National Academy of Sciences . en . 113 . 37 . 10223–10224 . 10.1073/pnas.1611504113 . 0027-8424 . 5027448 . 27625422 . free.
  13. Luo . Xin . Sullivan . Michael B. . Quek . Su Ying . 2012-11-27 . First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions . Physical Review B . en . 86 . 18 . 184111 . 10.1103/PhysRevB.86.184111 . 1308.1523 . 2012PhRvB..86r4111L . 118022274 . 1098-0121.
  14. Holtgrewe . Kris . 2022 . Theoretical modelling of nano-scaled systems with heavy ions . Universitätsbibliothek Gießen . en . 10.22029/jlupub-7899.
  15. Flammini . R . Colonna . S . Hogan . C . Mahatha . S K . Papagno . M . Barla . A . Sheverdyaeva . P M . Moras . P . Aliev . Z S . Babanly . M B . Chulkov . E V . Carbone . C . Ronci . F . 2018-02-09 . Evidence of β -antimonene at the Sb/Bi 2 Se 3 interface . Nanotechnology . 29 . 6 . 065704 . 10.1088/1361-6528/aaa2c4 . 29320369 . 2018Nanot..29f5704F . 0957-4484.
  16. Hogan . Conor . Holtgrewe . Kris . Ronci . Fabio . Colonna . Stefano . Sanna . Simone . Moras . Paolo . Sheverdyaeva . Polina M. . Mahatha . Sanjoy . Papagno . Marco . Aliev . Ziya S. . Babanly . Mahammad . Chulkov . Evgeni V. . Carbone . Carlo . Flammini . Roberto . 2019-09-24 . Temperature Driven Phase Transition at the Antimonene/Bi 2 Se 3 van der Waals Heterostructure . ACS Nano . en . 13 . 9 . 10481–10489 . 10.1021/acsnano.9b04377 . 31469534 . 1906.01901 . 174799137 . 1936-0851.
  17. Jin . Kyung-Hwan . Yeom . Han Woong . Jhi . Seung-Hoon . 2016-02-19 . Band structure engineering of topological insulator heterojunctions . Physical Review B . en . 93 . 7 . 075308 . 10.1103/PhysRevB.93.075308 . 2016PhRvB..93g5308J . 2469-9950.
  18. Holtgrewe . K. . Mahatha . S. K. . Sheverdyaeva . P. M. . Moras . P. . Flammini . R. . Colonna . S. . Ronci . F. . Papagno . M. . Barla . A. . Petaccia . L. . Aliev . Z. S. . Babanly . M. B. . Chulkov . E. V. . Sanna . S. . Hogan . C. . 2020-09-03 . Topologization of β-antimonene on Bi2Se3 via proximity effects . Scientific Reports . en . 10 . 1 . 14619 . 10.1038/s41598-020-71624-4 . 2045-2322 . 7471962 . 32884112. 2020NatSR..1014619H .
  19. Holtgrewe . Kris . Hogan . Conor . Sanna . Simone . 2021-04-02 . Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3 . Materials . en . 14 . 7 . 1763 . 10.3390/ma14071763 . 1996-1944 . 8061775 . 33918428. 2021Mate...14.1763H . free .
  20. Web site: Santa Catarina Mine, Rancho Calvillo, Santa Rosa, Sierra de Santa Rosa, Guanajuato Municipality, Guanajuato, Mexico . April 3, 2022 . mindat.org.
  21. Web site: Anthony . John W. . Bideaux . Richard A. . Bladh . Kenneth W. . Nichols . Monte C. . Guanajuatite . April 3, 2022 . Handbook of Mineralogy . Mineralogical Society of America.
  22. Nisson . D. M. . Dioguardi . A. P. . Klavins . P. . Lin . C. H. . Shirer . K. . Shockley . A. C. . Crocker . J. . Curro . N. J. . 2013-05-13 . Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3 . Physical Review B . en . 87 . 19 . 195202 . 10.1103/PhysRevB.87.195202 . 1304.6768 . 2013PhRvB..87s5202N . 118621215 . 1098-0121.
  23. Butch . N. P. . Kirshenbaum . K. . Syers . P. . Sushkov . A. B. . Jenkins . G. S. . Drew . H. D. . Paglione . J. . 2010-06-01 . Strong surface scattering in ultrahigh-mobility Bi 2 Se 3 topological insulator crystals . Physical Review B . en . 81 . 24 . 241301 . 10.1103/PhysRevB.81.241301 . 1003.2382 . 2010PhRvB..81x1301B . 55078840 . 1098-0121.
  24. Chen . Yang . Liu . Yajun . Chu . Maoyou . Wang . Lijun . 2014-12-25 . Phase diagrams and thermodynamic descriptions for the Bi–Se and Zn–Se binary systems . Journal of Alloys and Compounds . en . 617 . 423–428 . 10.1016/j.jallcom.2014.08.001 . 0925-8388.
  25. Atuchin . V. V. . Golyashov . V. A. . Kokh . K. A. . Korolkov . I. V. . Kozhukhov . A. S. . Kruchinin . V. N. . Makarenko . S. V. . Pokrovsky . L. D. . Prosvirin . I. P. . Romanyuk . K. N. . Tereshchenko . O. E. . 2011-12-07 . Formation of Inert Bi2Se3(0001) Cleaved Surface . Crystal Growth & Design . 11 . 12 . 5507–5514 . 10.1021/cg201163v . 1528-7483.