In mathematics, the binary tetrahedral group, denoted 2T or (2,3,3),[1] is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the preimage of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C. Shephard or 3[3]3 and by Coxeter, is isomorphic to the binary tetrahedral group.
The binary tetrahedral group is most easily described concretely as a discrete subgroup of the unit quaternions, under the isomorphism, where Sp(1) is the multiplicative group of unit quaternions. (For a description of this homomorphism see the article on quaternions and spatial rotations.)
\{\pm1,\pmi,\pmj,\pmk,\tfrac{1}{2}(\pm1\pmi\pmj\pmk)\}
All 24 units have absolute value 1 and therefore lie in the unit quaternion group Sp(1). The convex hull of these 24 elements in 4-dimensional space form a convex regular 4-polytope called the 24-cell.
The binary tetrahedral group, denoted by 2T, fits into the short exact sequence
1\to\{\pm1\}\to2T\toT\to1.
The binary tetrahedral group is the covering group of the tetrahedral group. Thinking of the tetrahedral group as the alternating group on four letters,, we thus have the binary tetrahedral group as the covering group,
The center of 2T is the subgroup . The inner automorphism group is isomorphic to A4, and the full automorphism group is isomorphic to S4.[2]
The binary tetrahedral group can be written as a semidirect product
2T=Q\rtimesC3
One can show that the binary tetrahedral group is isomorphic to the special linear group SL(2,3) – the group of all matrices over the finite field F3 with unit determinant, with this isomorphism covering the isomorphism of the projective special linear group PSL(2,3) with the alternating group A4.
The group 2T has a presentation given by
\langler,s,t\midr2=s3=t3=rst\rangle
\langles,t\mid(st)2=s3=t3\rangle.
r=i s=\tfrac{1}{2}(1+i+j+k) t=\tfrac{1}{2}(1+i+j-k),
with
r2=s3=t3=-1
A Cayley Table with these properties, elements ordered by GAP, is
1 2 r 4 -1 6 7 8 9 10 11 12 13 s 15 16 17 t 19 20 21 22 23 24 2 6 7 8 9 1 13 s 15 16 17 t r 4 -1 20 21 22 23 10 11 12 24 19 r 8 -1 10 11 20 23 9 t 12 1 19 s 21 24 7 16 2 4 15 22 13 17 6 4 16 19 -1 12 13 8 17 23 r 10 1 15 20 21 9 t 7 11 22 6 24 2 s -1 9 11 12 1 15 17 t 2 19 r 4 21 22 6 23 7 8 10 24 13 s 16 20 6 1 13 s 15 2 r 4 -1 20 21 22 7 8 9 10 11 12 24 16 17 t 19 23 7 s 9 16 17 10 24 15 22 t 2 23 4 11 19 13 20 6 8 -1 12 r 21 1 8 20 23 9 t r s 21 24 7 16 2 -1 10 11 15 22 13 17 12 1 19 6 4 9 15 17 t 2 -1 21 22 6 23 7 8 11 12 1 24 13 s 16 19 r 4 20 10 10 7 4 11 19 s 9 16 17 -1 12 r 24 15 22 t 2 23 1 13 20 6 8 21 11 t 1 19 r 24 16 2 8 4 -1 10 22 13 20 17 23 9 12 6 s 21 7 15 12 23 10 1 4 21 t 7 16 11 19 -1 6 24 13 2 8 17 r s 15 20 9 22 13 4 15 20 21 16 19 -1 12 22 6 24 8 17 23 r 10 1 s 9 t 7 11 2 s 10 24 15 22 7 4 11 19 13 20 6 9 16 17 -1 12 r 21 t 2 23 1 8 15 -1 21 22 6 9 11 12 1 24 13 s 17 t 2 19 r 4 20 23 7 8 10 16 16 13 8 17 23 4 15 20 21 9 t 7 19 -1 12 22 6 24 2 r 10 1 s 11 17 22 2 23 7 19 20 6 s 8 9 16 12 r 10 21 24 15 t 1 4 11 13 -1 t 24 16 2 8 11 22 13 20 17 23 9 1 19 r 6 s 21 7 4 -1 10 15 12 19 17 12 r 10 22 2 23 7 1 4 11 20 6 s 8 9 16 -1 21 24 15 t 13 20 r s 21 24 8 -1 10 11 15 22 13 23 9 t 12 1 19 6 7 16 2 4 17 21 12 6 24 13 23 10 1 4 s 15 20 t 7 16 11 19 -1 22 2 8 17 r 9 22 19 20 6 s 17 12 r 10 21 24 15 2 23 7 1 4 11 13 8 9 16 -1 t 23 21 t 7 16 12 6 24 13 2 8 17 10 1 4 s 15 20 9 11 19 -1 22 r 24 11 22 13 20 t 1 19 r 6 s 21 16 2 8 4 -1 10 15 17 23 9 12 7There is 1 element of order 1 (element 1), one element of order 2 (
e5=-1
e3=r
e14=s
e18=t
The quaternion group consisting of the 8 Lipschitz units forms a normal subgroup of 2T of index 3. This group and the center are the only nontrivial normal subgroups.
All other subgroups of 2T are cyclic groups generated by the various elements, with orders 3, 4, and 6.[3]
Just as the tetrahedral group generalizes to the rotational symmetry group of the n-simplex (as a subgroup of SO(n)), there is a corresponding higher binary group which is a 2-fold cover, coming from the cover Spin(n) → SO(n).
The rotational symmetry group of the n-simplex can be considered as the alternating group on n + 1 points, An+1, and the corresponding binary group is a 2-fold covering group. For all higher dimensions except A6 and A7 (corresponding to the 5-dimensional and 6-dimensional simplexes), this binary group is the covering group (maximal cover) and is superperfect, but for dimensional 5 and 6 there is an additional exceptional 3-fold cover, and the binary groups are not superperfect.
The binary tetrahedral group was used in the context of Yang–Mills theory in 1956 by Chen Ning Yang and others.[4] It was first used in flavor physics model building by Paul Frampton and Thomas Kephart in 1994.[5] In 2012 it was shown [6] that a relation between two neutrino mixing angles,derived[7] by using this binary tetrahedral flavor symmetry, agrees with experiment.
. Smith, Derek A. . John Horton Conway . On Quaternions and Octonions . AK Peters, Ltd . Natick, Massachusetts . 2003 . 1-56881-134-9.