In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2).[1] That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2).
A matroid
M
l{S}
l{S}
C,D
C
M
D
M
|C\capD|
B,C
B
M
C
M
C
B
C\setminusB
M
2 | |
U{} | |
4 |
Every regular matroid, and every graphic matroid, is binary.[5] A binary matroid is regular if and only if it does not contain the Fano plane (a seven-element non-regular binary matroid) or its dual as a minor.[9] A binary matroid is graphic if and only if its minors do not include the dual of the graphic matroid of
K5
K3,3
If
M
M
define a bipartite matroid to be a matroid in which every circuit has even cardinality, and an Eulerian matroid to be a matroid in which the elements can be partitioned into disjoint circuits. Within the class of graphic matroids, these two properties describe the matroids of bipartite graphs and Eulerian graphs (not-necessarily-connected graphs in which all vertices have even degree), respectively. For planar graphs (and therefore also for the graphic matroids of planar graphs) these two properties are dual: a planar graph or its matroid is bipartite if and only if its dual is Eulerian. The same is true for binary matroids. However, there exist non-binary matroids for which this duality breaks down.[5] [11]
Any algorithm that tests whether a given matroid is binary, given access to the matroid via an independence oracle, must perform an exponential number of oracle queries, and therefore cannot take polynomial time.[12]