Bienaymé's identity explained

In probability theory, the general[1] form of Bienaymé's identity states that

\operatorname{Var}\left(

n
\sum
i=1

Xi

n
\right)=\sum
i=1

\operatorname{Var}(Xi)+2\sum

n
i,j=1\atopi<j

\operatorname{Cov}(Xi,Xj)=\sum

n\operatorname{Cov}(X
i,X

j)

.

This can be simplified if

X1,\ldots,Xn

are pairwise independent or just uncorrelated, integrable random variables, each with finite second moment. This simplification gives:
n
\operatorname{Var}\left(\sum
i=1

Xi\right)=

n
\sum
k=1

\operatorname{Var}(Xk)

.

The above expression is sometimes referred to as Bienaymé's formula. Bienaymé's identity may be used in proving certain variants of the law of large numbers.

See also

References

  1. Book: Klenke, Achim. 2013. Wahrscheinlichkeitstheorie. 106. 10.1007/978-3-642-36018-3.

[2] [3]