In probability theory, the general[1] form of Bienaymé's identity states that
\operatorname{Var}\left(
n | |
\sum | |
i=1 |
Xi
n | |
\right)=\sum | |
i=1 |
\operatorname{Var}(Xi)+2\sum
n | |
i,j=1\atopi<j |
\operatorname{Cov}(Xi,Xj)=\sum
n\operatorname{Cov}(X | |
i,X |
j)
This can be simplified if
X1,\ldots,Xn
n | |
\operatorname{Var}\left(\sum | |
i=1 |
Xi\right)=
n | |
\sum | |
k=1 |
\operatorname{Var}(Xk)
The above expression is sometimes referred to as Bienaymé's formula. Bienaymé's identity may be used in proving certain variants of the law of large numbers.