Biconditional elimination | |||||||
Type: | Rule of inference | ||||||
Field: | Propositional calculus | ||||||
Statement: | If P\leftrightarrowQ P\toQ Q\toP | ||||||
Symbolic Statement: |
|
Biconditional elimination is the name of two valid rules of inference of propositional logic. It allows for one to infer a conditional from a biconditional. If
P\leftrightarrowQ
P\toQ
Q\toP
P\leftrightarrowQ | |
\thereforeP\toQ |
P\leftrightarrowQ | |
\thereforeQ\toP |
where the rule is that wherever an instance of "
P\leftrightarrowQ
P\toQ
Q\toP
The biconditional elimination rule may be written in sequent notation:
(P\leftrightarrowQ)\vdash(P\toQ)
(P\leftrightarrowQ)\vdash(Q\toP)
where
\vdash
P\toQ
Q\toP
P\leftrightarrowQ
or as the statement of a truth-functional tautology or theorem of propositional logic:
(P\leftrightarrowQ)\to(P\toQ)
(P\leftrightarrowQ)\to(Q\toP)
where
P
Q