In mathematics, especially functional analysis, Bessel's inequality is a statement about the coefficients of an element
x
Let
H
e1,e2,...
H
x
H
infty | |
\sum | |
k=1 |
\left\vert\left\langlex,ek\right\rangle\right\vert2\le\left\Vertx\right\Vert2,
where ⟨·,·⟩ denotes the inner product in the Hilbert space
H
x'=
infty | |
\sum | |
k=1 |
\left\langlex,ek\right\rangleek,
x
ek
x'\inH
e1,e2,...
For a complete orthonormal sequence (that is, for an orthonormal sequence that is a basis), we have Parseval's identity, which replaces the inequality with an equality (and consequently
x'
x
Bessel's inequality follows from the identity
\begin{align} 0\leq\left\|x-
n | |
\sum | |
k=1 |
\langlex,ek\rangle
2 | |
e | |
k\right\| |
&=\|x\|2-2
n | |
\sum | |
k=1 |
\operatorname{Re}\langlex,\langlex,ek\rangleek\rangle+
n | |
\sum | |
k=1 |
|\langlex,ek\rangle|2\\ &=\|x\|2-2
n | |
\sum | |
k=1 |
|\langlex,ek\rangle|2+
n | |
\sum | |
k=1 |
|\langlex,ek\rangle|2\\ &=\|x\|2-
n | |
\sum | |
k=1 |
|\langlex,ek\rangle|2, \end{align}
. Beginning Functional Analysis. Karen Saxe . 2001-12-07. Springer Science & Business Media. 9780387952246. 82. en.