n>3
p
n<p<2n-2.
n>1
p
n<p<2n.
pn
n
n\ge1
pn+1<2pn.
This statement was first conjectured in 1845 by Joseph Bertrand[2] (1822–1900). Bertrand himself verified his statement for all integers
2\len\le3000000
His conjecture was completely proved by Chebyshev (1821–1894) in 1852[3] and so the postulate is also called the Bertrand–Chebyshev theorem or Chebyshev's theorem. Chebyshev's theorem can also be stated as a relationship with
\pi(x)
x
\pi(x)-\pil(\tfrac{x}{2}r)\ge1,forallx\ge2.
The prime number theorem (PNT) implies that the number of primes up to x is roughly x/ln(x), so if we replace x with 2x then we see the number of primes up to 2x is asymptotically twice the number of primes up to x (the terms ln(2x) and ln(x) are asymptotically equivalent). Therefore, the number of primes between n and 2n is roughly n/ln(n) when n is large, and so in particular there are many more primes in this interval than are guaranteed by Bertrand's postulate. So Bertrand's postulate is comparatively weaker than the PNT. But PNT is a deep theorem, while Bertrand's Postulate can be stated more memorably and proved more easily, and also makes precise claims about what happens for small values of n. (In addition, Chebyshev's theorem was proved before the PNT and so has historical interest.)
The similar and still unsolved Legendre's conjecture asks whether for every n ≥ 1, there is a prime p such that n2 < p < (n + 1)2. Again we expect that there will be not just one but many primes between n2 and (n + 1)2, but in this case the PNT doesn't help: the number of primes up to x2 is asymptotic to x2/ln(x2) while the number of primes up to (x + 1)2 is asymptotic to (x + 1)2/ln((x + 1)2), which is asymptotic to the estimate on primes up to x2. So unlike the previous case of x and 2x we don't get a proof of Legendre's conjecture even for all large n. Error estimates on the PNT are not (indeed, cannot be) sufficient to prove the existence of even one prime in this interval.
In 1919, Ramanujan (1887–1920) used properties of the Gamma function to give a simpler proof than Chebyshev's. His short paper included a generalization of the postulate, from which would later arise the concept of Ramanujan primes. Further generalizations of Ramanujan primes have also been discovered; for instance, there is a proof that
2pi-n>pifori>kwherek=\pi(pk)=\pi(Rn),
with pk the kth prime and Rn the nth Ramanujan prime.
Other generalizations of Bertrand's postulate have been obtained using elementary methods. (In the following, n runs through the set of positive integers.) In 1973, Denis Hanson proved that there exists a prime between 3n and 4n.[4] In 2006, apparently unaware of Hanson's result, M. El Bachraoui proposed a proof that there exists a prime between 2n and 3n. Shevelev, Greathouse, and Moses (2013) discuss related results for similar intervals.
Bertrand’s postulate over the Gaussian integers is an extension of the idea of the distribution of primes, but in this case on the complex plane. Thus, as Gaussian primes extend over the plane and not only along a line, and doubling a complex number is not simply multiplying by 2 but doubling its norm (multiplying by 1+i), different definitions lead to different results, some are still conjectures, some proven.
Bertrand's postulate was proposed for applications to permutation groups. Sylvester (1814–1897) generalized the weaker statement with the statement: the product of k consecutive integers greater than k is divisible by a prime greater than k. Bertrand's (weaker) postulate follows from this by taking k = n, and considering the k numbers n + 1, n + 2, up to and including n + k = 2n, where n > 1. According to Sylvester's generalization, one of these numbers has a prime factor greater than k. Since all these numbers are less than 2(k + 1), the number with a prime factor greater than k has only one prime factor, and thus is a prime. Note that 2n is not prime, and thus indeed we now know there exists a prime p with n < p < 2n.
\vartheta
\vartheta(x)=
x | |
\sum | |
p=2 |
ln(p)
where p ≤ x runs over primes. See proof of Bertrand's postulate for the details.
Erdős proved in 1934 that for any positive integer k, there is a natural number N such that for all n > N, there are at least k primes between n and 2n. An equivalent statement had been proved in 1919 by Ramanujan (see Ramanujan prime).
\varepsilon>0
n0>0
n>n0
p
n<p<(1+\varepsilon)n
\limn
\pi((1+\varepsilon)n)-\pi(n) | |
n/logn |
=\varepsilon,
which implies that
\pi((1+\varepsilon)n)-\pi(n)
n
Non-asymptotic bounds have also been proved. In 1952, Jitsuro Nagura proved that for
n\ge25
n
l(1+\tfrac{1}{5}r)n
In 1976, Lowell Schoenfeld showed that for
n\ge2010760
p
n<p<l(1+\tfrac{1}{16597}r)n
In his 1998 doctoral thesis, Pierre Dusart improved the above result, showing that for
k\ge463
pk+1\le\left(1+
1 | ||||||||
|
x\ge3275
p
x<p\le\left(1+
1 | |
2ln2{x |
}\right)x
In 2010 Pierre Dusart proved that for
x\ge396738
p
x<p\le\left(1+
1 | |
25ln2{x |
}\right)x
In 2016, Pierre Dusart improved his result from 2010, showing (Proposition 5.4) that if
x\ge89693
p
x<p\le\left(1+
1 | |
ln3{x |
}\right)x
x\ge468991632
p
x<p\le\left(1+
1 | |
5000ln2{x |
}\right)x
Baker, Harman and Pintz proved that there is a prime in the interval
[x-x0.525,x]
x
Dudek proved that for all
n\ge
e33.3 | |
e |
n3
(n+1)3
Dudek also proved that the Riemann hypothesis implies that for all
x\geq2
p
x-
4 | |
\pi |
\sqrt{x}logx<p\leqx.