In Umbral calculus, the Bernoulli umbra
B-
n=B | |
\operatorname{eval}B | |
- |
- | |
n |
\operatorname{eval}
- | |
B | |
n |
n=B | |
\operatorname{eval}B | |
+ |
+ | |
n |
+ | |
B | |
1=1/2 |
B+=B-+1
B-=\varepsilon-1-
1 | - | |
2 |
\varepsilon | + | |
24 |
3\varepsilon3 | - | |
640 |
1525\varepsilon5 | |
580608 |
+...b
B+=\varepsilon-1+
1 | - | |
2 |
\varepsilon | + | |
24 |
3\varepsilon3 | - | |
640 |
1525\varepsilon5 | |
580608 |
+...b
1=\varepsilon0
\varepsilon-1
B-
\varepsilon-1-1/2
B+
\varepsilon-1+1/2
In Hardy fields (which are generalizations of Levi-Civita field) umbra
B+
\psi-1(lnx)
B-
\psi-1(lnx)-1
\psi-1(x)
Since Bernoulli polynomials is a generalization of Bernoulli numbers, exponentiation of Bernoulli umbra can be expressed via Bernoulli polynomials:
\operatorname{eval}
n=B | |
(B | |
n(a), |
where
a
\operatorname{eval}
p=-p\zeta(1-p,a). | |
(B | |
-+a) |
From the Riemann functional equation for Zeta function it follows that
-p | ||
\operatorname{eval}B | =\operatorname{eval} | |
+ |
| ||||||||||
\sin(\pip/2)\Gamma(p)(p+1) |
Since
+ | |
B | |
1=1/2 |
- | |
B | |
1=-1/2 |
+ | |
B | |
n |
- | |
B | |
n |
f(x)
f'(x)=\operatorname{eval}(f(B++x)-f(B-+x))=\operatorname{eval}\Deltaf(B-+x)
As a general rule, the following formula holds for any analytic function
f(x)
\operatorname{eval}f(B | ||||
|
f(x).
This allows to derive expressions for elementary functions of Bernoulli umbra.
\operatorname{eval}\cos(zB-)=\operatorname{eval}\cos(z
B | \left( | ||||
|
z2\right) | |
\operatorname{eval}\cosh(zB-)=\operatorname{eval}\cosh(z
B | \left( | ||||
|
z2\right) | |
\operatorname{eval}
zB- | ||
e | = |
z | |
ez-1 |
\operatorname{eval}ln(B-+z)=\psi(z)
Particularly,
\operatorname{eval}lnB+=-\gamma
\operatorname{eval} | 1{\pi | \left( |
}ln |
| ||||||||||
|
\right)=\cotz
\operatorname{eval}
1\piln | |||||||||||||
|
\right)=\tanz
\operatorname{eval}\cos(aB-+x)=
a | |
2 |
\csc\left(
a | |
2 |
\right)\cos\left(
a | |
2 |
-x\right)
\operatorname{eval}\sin(aB-+x)=
a | |
2 |
\cot\left(
a | |
2 |
\right)\sinx-
a | |
2 |
\cosx
Particularly,
\operatorname{eval}\sinB-=-1/2
\operatorname{eval}\sinB+=1/2
Bernoulli umbra allows to establish relations between exponential, trigonometric and hyperbolic functions on one side and logarithms, inverse trigonometric and inverse hyperbolic functions on the other side in closed form:
\operatorname{eval}\left(\cosh\left(2xB
\operatorname{artanh}\left( | |||||
|
x | \right)=\operatorname{eval} | |
\piB\pm |
x | \operatorname{arcoth}\left( | |
\pi |
\piB\pm | |
x |
\right)=x\coth(x)-1
\operatorname{eval} | z |
2\pi |
ln\left(
| ||||||||||
|
\right)=\operatorname{eval}\cos(zB-)=\operatorname{eval}\cos(z
B | \left( | ||||
|
z2\right) | |