The Benedict–Webb–Rubin equation (BWR), named after Manson Benedict, G. B. Webb, and L. C. Rubin, is an equation of state used in fluid dynamics. Working at the research laboratory of the M. W. Kellogg Company, the three researchers rearranged the Beattie–Bridgeman equation of state and increased the number of experimentally determined constants to eight.
P=\rhoRT+\left(B0RT-A0-
C0 | |
T2 |
\right)\rho2+\left(bRT-a\right)\rho3+\alphaa\rho6+
c\rho3 | |
T2 |
\left(1+\gamma\rho2\right)\exp\left(-\gamma\rho2\right)
\rho
A modification of the Benedict–Webb–Rubin equation of state by Professor Kenneth E. Starling of the University of Oklahoma:
P=\rhoRT+\left(B0RT-A0-
C0 | |
T2 |
+
D0 | |
T3 |
-
E0 | |
T4 |
\right)\rho2+\left(bRT-a-
d | |
T |
\right)\rho3+\alpha\left(a+
d | |
T |
\right)\rho6+
c\rho3 | |
T2 |
\left(1+\gamma\rho2\right)\exp\left(-\gamma\rho2\right)
where
\rho
B0
A0
\begin{align} &A0=\sumi\sumjxixj
1/2 | |
A | |
0i |
1/2 | |
A | |
0j |
(1-kij)\\ &B0=\sumixiB0i\\ &C0=\sumi\sumjxixj
1/2 | |
C | |
0i |
1/2 | |
C | |
0j |
(1-kij)3\\ &D0=\sumi\sumjxixj
1/2 | |
D | |
0i |
1/2 | |
D | |
0j |
(1-kij)4\\ &E0=\sumi\sumjxixj
1/2 | |
E | |
0i |
1/2 | |
E | |
0j |
(1-kij)5\\ &\alpha=\left[\sumixi
1/3 | |
\alpha | |
i |
\right]3\\ &\gamma=\left[\sumixi
1/2 | |
\gamma | |
i |
\right]2\\ &a=\left[\sumixi
1/3 | |
a | |
i |
\right]3\\ &b=\left[\sumixi
1/3 | |
b | |
i |
\right]3\\ &c=\left[\sumixi
1/3 | |
c | |
i |
\right]3\\ &d=\left[\sumixi
1/3 | |
d | |
i |
\right]3 \end{align}
where
i
j
B0i
A0i
i
xi
i
kij
Values of the various parameters for 15 substances can be found in Starling's Fluid Properties for Light Petroleum Systems..
A further modification of the Benedict–Webb–Rubin equation of state by Jacobsen and Stewart:
9 | |
P=\sum | |
n=1 |
n+\exp\left(-\gamma\rho | |
a | |
n\rho |
15 | |
n=10 |
2n-17 | |
a | |
n\rho |
where:
2 | |
\gamma=1/\rho | |
c |