Bell diagonal state explained
Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.[1]
Definition
The Bell diagonal state is defined as the probabilistic mixture of Bell states:
} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)
} (|0\rangle_A \otimes |0\rangle_B - |1\rangle_A \otimes |1\rangle_B)
} (|0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B)
} (|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B)
In density operator form, a Bell diagonal state is defined as
\varrhoBell
\langle
| -\rangle\langle |
\phi | |
| 2|\phi |
| +\rangle\langle |
\phi | |
| 3|\psi |
| -\rangle\langle\psi |
\psi | |
| 4|\psi |
-|
where
is a probability distribution. Since
, a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as
.
Properties
1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e.,
.
[2] 2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:
Relative entropy of entanglement
,
[3] where
is the
binary entropy function.
Entanglement of formation
,where
is the
binary entropy function.
Negativity
Log-negativity
3. Any 2-qubit state where the reduced density matrices are maximally mixed,
, is Bell-diagonal in some local basis. Viz., there exist local unitaries
such that
is Bell-diagonal.
Notes and References
- Horodecki . Ryszard . Horodecki . Paweł . Horodecki . Michał . Horodecki . Karol . 2009-06-17 . Quantum entanglement . Reviews of Modern Physics . 81 . 2 . 865–942 . 10.1103/RevModPhys.81.865. quant-ph/0702225 . 2009RvMP...81..865H . 260606370 .
- Horodecki . Ryszard . Horodecki . Michal/ . 1996-09-01 . Information-theoretic aspects of inseparability of mixed states . Physical Review A . 54 . 3 . 1838–1843 . 10.1103/PhysRevA.54.1838. 9913669 . quant-ph/9607007 . 1996PhRvA..54.1838H . 2340228 .
- Vedral . V. . Plenio . M. B. . Rippin . M. A. . Knight . P. L. . 1997-03-24 . Quantifying Entanglement . Physical Review Letters . 78 . 12 . 2275–2279 . 10.1103/PhysRevLett.78.2275. quant-ph/9702027 . 1997PhRvL..78.2275V . 10044/1/300 . 16118336 .