In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.
In a classical or quantum local field theory, the generator of Lorentz transformations can be written as an integral
M\mu\nu=\intd3x
0} | |
{M | |
\mu\nu |
of a local current
\mu} | |
{M | |
\nuλ |
=(x\nu
\mu} | |
{T | |
λ |
-xλ
\mu} | |
{T | |
\nu)+ |
\mu} | |
{S | |
\nuλ |
.
Here
\mu} | |
{T | |
λ |
\partial\mu
\mu} | |
{T | |
λ |
=0
{S\mu
\mu} | |
{M | |
\nuλ |
=
\mu} | |
-{M | |
λ\nu |
implies the anti-symmetry
\mu} | |
{S | |
\nuλ |
=
\mu} | |
-{S | |
λ\nu |
.
Local conservation of angular momentum
\partial\mu
\mu} | |
{M | |
\nuλ |
=0
requires that
\partial\mu
\mu} | |
{S | |
\nuλ |
=Tλ\nu-T\nuλ.
Thus a source of spin-current implies a non-symmetric canonical stress–energy tensor.
The Belinfante–Rosenfeld tensor[1] [2] is a modification of the stress–energy tensor
\mu\nu | |
T | |
B |
=T\mu\nu+
12 | |
\partial |
\mu\nuλ | |
λ(S |
+S\nu\muλ-Sλ\nu\mu)
that is constructed from the canonical stress–energy tensor and the spin current
{S\mu
\partial\mu
\mu\nu | |
T | |
B |
=0.
M\nuλ=\int(x\nu
0λ | |
T | |
B |
-xλ
0\nu | |
T | |
B) |
d3x,
and so a physical interpretation of Belinfante tensor is that it includes the "bound momentum" associated with gradients of the intrinsic angular momentum. In other words, the added term is an analogue of the
{J}bound=\nabla x M
{M}
The curious combination of spin-current components required to make
\mu\nu | |
T | |
B |
The Hilbert energy–momentum tensor
T\mu\nu
S\rm
\deltaS\rm=
12 | |
\int |
dnx\sqrt{g}T\mu\nu\deltag\mu\nu,
or equivalently as
\deltaS\rm=-
12 | |
\int |
dnx\sqrt{g}T\mu\nu\deltag\mu\nu.
(The minus sign in the second equation arises because
\deltag\mu\nu=-g\mu\sigma\deltag\sigma\taug\tau\nu
\delta(g\mu\sigmag\sigma\tau)=0.
We may also define an energy–momentum tensor
Tcb
{\bfe}a
\deltaS\rm=\intdnx\sqrt{g}\left(
\deltaS | ||||||||
|
\right)\delta
\mu | |
e | |
a |
\equiv\intdnx\sqrt{g}\left(Tcbηca
*b | |
e | |
\mu\right) |
\delta
\mu | |
e | |
a. |
Here
ηab={\bfe}a ⋅ {\bfe}b
{\bfe}*b
With the vierbein variation there is no immediately obvious reason for
Tcb
S\rm({\bfe}a)
\delta
\mu | |
e | |
a= |
\mu | |
e | |
b |
{\thetab
\thetaab=-\thetaba
\deltaS\rm=\intdnx\sqrt{g}Tcbηca
*b | |
e | |
\mu |
\mu | |
e | |
d |
d} | |
{\theta | |
a = |
\intdnx\sqrt{g}Tcbηca
b} | |
{\theta | |
a = |
\intdnx\sqrt{g}Tcb\thetabc(x),
should be zero.As
\thetabc(x)
Tbc=Tcb
Once we know that
Tab
Tab=
\mu | |
e | |
a |
\nu | |
e | |
b |
T\mu\nu
We can now understand the origin of the Belinfante–Rosenfeld modification of the Noether canonical energy momentum tensor. Take the action to be
S\rm({\bfe}a,
ab | |
{\omega} | |
\mu |
)
ab | |
{\omega} | |
\mu |
{\bfe}a
\mu} | |
{S | |
ab |
\mu} | |
{S | |
ab |
=
2 | \left.\left( | |
\sqrtg |
\deltaS\rm | ||||||||
|
\right)\right|{\bfa}
the vertical bar denoting that the
{\bfe}a
(0) | |
T | |
cb |
Tcb(0)ηca
*b | |
e | |
\mu= |
1 | |
\sqrt{g |
Then
\deltaS\rm=\intdnx\sqrt{g}\left\{Tcb(0)ηca
*b | |
e | |
\mu |
\delta
\mu | |
e | |
a+ |
12 | |
S\mu |
ab\delta{\omegaab
Now, for a torsion-free and metric-compatible connection, we havethat
(\delta\omegaij\mu)
\mu | ||
e | =- | |
k |
12\left\{(\nabla | |
j |
\deltaeik-\nablak\deltaeij) +(\nablak\deltaeji-\nablai\deltaejk)-(\nablai\deltaekj-\nablaj\deltaeki)\right\},
where we are using the notation
\deltaeij={\bfe}i ⋅ \delta{\bfe}j=ηib
*b | |
[e | |
\alpha |
\delta
\alpha]. | |
e | |
j |
Using the spin-connection variation, and after an integration by parts, we find
\deltaS\rm=\intdnx\sqrt{g}\left\{Tcb(0)+
12 | |
\nabla |
a({Sbc
Thus we see that corrections to the canonical Noether tensor that appear in the Belinfante–Rosenfeld tensor occur because we need to simultaneously vary the vierbein and the spin connection if we are to preserve local Lorentz invariance.
As an example, consider the classical Lagrangian for the Dirac field
\intddx\sqrt{g}\left\{
i | |
2 |
\left(\bar\Psi\gammaa
\mu | |
e | |
a\nabla |
\mu\Psi-(\nabla\mu
\mu | |
\bar\Psi)e | |
a |
\gammaa\Psi\right)+m\bar\Psi\Psi\right\}.
Here the spinor covariant derivatives are
\nabla\mu\Psi=\left(
\partial | + | |
\partialx\mu |
18 | |
[\gamma |
b,\gammac]{\omegabc
\nabla\mu\bar\Psi=\left(
\partial | - | |
\partialx\mu |
18 | |
[\gamma |
b,\gammac]{\omegabc
We therefore get
(0) | |
T | |
bc |
=
i2\left(\bar | |
\Psi |
\gammac(\nablab\Psi)-(\nablab\bar\Psi)\gammac\Psi\right),
a} | |
{S | |
bc |
=
i8 | |
\bar\Psi\{\gamma |
a,[\gamma | |
b,\gamma |
c]\}\Psi.
There is no contribution from
\sqrt{g}
Now
\{\gammaa,[\gammab,\gammac]\}=4\gammaa\gammab\gammac,
a,b,c
Sabc
\nablaa
a} | |
{S | |
bc |
=
(0) | |
T | |
cb |
(0) | |
-T | |
bc |
.
Thus the Belinfante–Rosenfeld tensor becomes
Tbc=
(0) | |
T | |
bc |
+
12(T | |
(0) |
cb
(0) | |
-T | |
bc |
) =
12 | |
(T |
(0) | |
bc |
(0) | |
+T | |
cb |
).
The Belinfante–Rosenfeld tensor for the Dirac field is therefore seen to be the symmetrized canonical energy–momentum tensor.
Steven Weinberg defined the Belinfante tensor as[3]
\mu\nu | |
T | |
B |
=T\mu\nu-
i | |
2 |
\partial\kappa\left[
\partiall{L | |
l{L}
T\mu\nu=η\mu\nu
|
l{J\mu\nu
[l{J}\mu\nu,l{J}\rho\sigma]=il{J}\rho\nuη\mu\sigma-il{J}\sigma\nuη\mu\rho-il{J}\mu\sigmaη\nu\rho+il{J}\mu\rhoη\nu\sigma