Bambi (software) explained
Bambi is a high-level Bayesian model-building interface written in Python. It works with the PyMC probabilistic programming framework. Bambi provides an interface to build and solve Bayesian generalized (non-)linear multivariate multilevel models.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Bambi is an open source project, developed by the community and is an affiliated project of NumFOCUS.
Etymology
Bambi is an acronym for BAyesian Model-Building Interface.
Library features
- Model specification using a Wilkison-like formula style
- Bayesian inference using MCMC and Variational Inference methods
- Interface with ArviZ, as Bambi returns an object
- Model interpretation via conditional adjusted comparisons, predictions, and slopes
- A wide array of response families
- Default priors that the users can modify if needed
See also
- Stan, a probabilistic programming language for statistical inference written in C++
Notes and References
- Mikkola . Petrus . Martin . Osvaldo A. . Chandramouli . Suyog . Hartmann . Marcelo . Abril Pla . Oriol . Thomas . Owen . Pesonen . Henri . Corander . Jukka . Vehtari . Aki . Kaski . Samuel . Bürkner . Paul-Christian . Klami . Arto . 2023 . Prior Knowledge Elicitation: The Past, Present, and Future . Bayesian Analysis . International Society for Bayesian Analysis . 1–33 . 10.1214/23-BA1381 . 2112.01380 .
- Štrumbelj . Erik . Bouchard-Côté . Alexandre . Corander . Jukka . Gelman . Andrew . Rue . Håvard . Murray . Lawrence . Pesonen . Henri . Plummer . Martyn . Vehtari . Aki . 2024 . Past, Present and Future of Software for Bayesian Inference . Statistical Science . 39 . 1 . 46–61 . Institute of Mathematical Statistics . 10.1214/23-STS907 . 10754/694575 . free .
- Book: Bayesian Modeling and Computation in Python . 2021 . Martin . OA . Kumar . R . Lao . J . Taylor & Francis .
- Qasim . SE . Mohan . UR . Stein . JM . Jacobs . J . 2023 . Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding . Nature Human Behaviour . 7 . 5 . 754–764 . 10.1038/s41562-022-01502-8 . 36646837 . 11243592 .
- Pettine . WW . Raman . DV . Redish . AD . 2023 . Human generalization of internal representations through prototype learning with goal-directed attention . Nature Human Behaviour . 7 . 3 . 442–463 . 10.1038/s41562-023-01543-7 . 36894642 .
- Pudhiyidath . A . Morton . NW . Viveros Duran . R . Schapiro . AC . Momennejad . I . Hinojosa-Rowland . DM . Molitor . RJ . Preston . AR . 2022 . Representations of Temporal Community Structure in Hippocampus and Precuneus Predict Inductive Reasoning Decisions . Journal of Cognitive Neuroscience . 34 . 10 . 1736–1760 . 10.1162/jocn_a_01864 . 35579986 . 10262802 .
- Michiels . Lien . Vannieuwenhuyze . Jorre . Leysen . Jens . Verachtert . Robin . Smets . Annelien . Goethals . Bart . Proceedings of the 17th ACM Conference on Recommender Systems . 2023 . How Should We Measure Filter Bubbles? A Regression Model and Evidence for Online News . RecSys '23 . 640–651. Association for Computing Machinery . 10.1145/3604915.3608805 . 979-8-4007-0241-9 . https://doi.org/10.1145/3604915.3608805 .
- Kallioinen . N . Paananen . T . Bürkner . PC . 2024 . Detecting and diagnosing prior and likelihood sensitivity with power-scaling . Statistics and Computing . 34 . 1 . 57 . 10.1007/s11222-023-10366-5 . free .
- Gehmacher . Q . Schubert . J . Schmidt . F . 2024 . Eye movements track prioritized auditory features in selective attention to natural speech . Nature Communications . 15 . 3692 . 10.1038/s41467-024-48126-2 . 2024NatCo..15.3692G . 11063150 .
- Abril-Pla . O . Andreani . V . Carroll . C . Dong . L . Fonnesbeck . CJ . Kochurov . M . Kumar . R . Lao . J . Luhmann . CC . Martin . OA . Osthege . M . Vieira . R . Wiecki . T . Zinkov . R . 2023 . PyMC: a modern, and comprehensive probabilistic programming framework in Python . PeerJ Computer Science . 9 . e1516 . 10.7717/peerj-cs.1516 . free . 37705656 . 10495961 .