In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.[1]
It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.
The generalized polygamma function is defined as follows:
\psi(z,q)= | \zeta'(z+1,q)+l(\psi(-z)+\gammar)\zeta(z+1,q) |
\Gamma(-z) |
\psi(z,q)=e-
\partial | |
\partialz |
\left(e\gamma
\zeta(z+1,q) | |
\Gamma(-z) |
\right),
where is the polygamma function and, is the Hurwitz zeta function.
The function is balanced, in that it satisfies the conditions
f(0)=f(1) and
1 | |
\int | |
0 |
f(x)dx=0
Several special functions can be expressed in terms of generalized polygamma function.
\begin{align} \psi(x)&=\psi(0,x)\\ \psi(n)(x)&=\psi(n,x) n\inN\\ \Gamma(x)&=\exp\left(\psi(-1,x)+\tfrac12ln2\pi\right)\\ \zeta(z,q)&=
(-1)z | |
\Gamma(z) |
\psi(z-1,q)\\ \zeta'(-1,x)&=\psi(-2,x)+
x2 | |
2 |
-
x | |
2 |
+
1{12} | |
\\ \end{align} |
K(z)=A\exp\left(\psi(-2,z)+
z2-z | |
2 |
\right)
where is the -function and is the Glaisher constant.
The balanced polygamma function can be expressed in a closed form at certain points (where is the Glaisher constant and is the Catalan constant):
\begin{align} \psi\left(-2,\tfrac14\right)&=\tfrac18lnA+
G | |
4\pi |
&&\\ \psi\left(-2,\tfrac12\right)&=\tfrac12lnA-\tfrac{1}{24}ln2&\\ \psi\left(-3,\tfrac12\right)&=
3\zeta(3) | |
32\pi2 |
\\ \psi(-2,1)&=-lnA&\\ \psi(-3,1)&=
-\zeta(3) | |
8\pi2 |
\\ \psi(-2,2)&=-lnA-1&\\ \psi(-3,2)&=
-\zeta(3) | |
8\pi2 |
-\tfrac34\\\end{align}