Baker percentage explained

Baker's percentage is a notation method indicating the proportion of an ingredient relative to the flour used in a recipe when making breads, cakes, muffins, and other baked goods.[1] [2] [3] [4] It is also referred to as baker's math,[5] [6] and may be indicated by a phrase such as based on flour weight.[7] It is sometimes called formula percentage, a phrase that refers to the sum of a set of baker's percentages. Baker's percentage expresses a ratio in percentages of each ingredient's weight to the total flour weight:[8] [9] [10]

Baker'spercentageingredient=100\% x

Weightingredient
Weightflour

For example, in a recipe that calls for 10 pounds of flour and 5 pounds of water, the corresponding baker's percentages are 100% for the flour and 50% for the water. Because these percentages are stated with respect to the weight of flour rather than with respect to the weight of all ingredients, the sum of these percentages always exceeds 100%.

Flour-based recipes are more precisely conceived as baker's percentages, and more accurately measured using weight instead of volume. The uncertainty in using volume measurements follows from the fact that flour settles in storage and therefore does not have a constant density.[11] [12]

Baker's percentages

A yeast-dough formula could call for the following list of ingredients, presented as a series of baker's percentages:

align=left flour  100% 
align=left water 60%
align=left yeast 1%
align=left salt 2%
align=left oil 1%

Conversions

There are several common conversions that are used with baker's percentages. Converting baker's percentages to ingredient weights is one. Converting known ingredient weights to baker percentages is another. Conversion to true percentages, or based on total weight, is helpful to calculate unknown ingredient weights from a desired total or formula weight.

Using baker's percentages

To derive the ingredient weights when any weight of flour Wf is chosen:[13]

\begin{align} Weightingredient&=

Weightflour x Baker'spercentageingredient
100\%

\\ &=Weightflour x Baker'spercentageingredient \end{align}

align=left colspan=2 Baker's
percentage
weights
[14]
align=left ingredient  % method 1 method 2
align=left flour  100%  align=left  Wf * 1.00 align=left  Wf * 100%
align=left water 35% align=left  Wf * 0.35 align=left  Wf * 35%
align=left milk 35% align=left  Wf * 0.35 align=left  Wf * 35%
align=left fresh yeast 4% align=left  Wf * 0.04 align=left  Wf * 4%
align=left salt 1.8% align=left  Wf * 0.018  align=left  Wf * 1.8%

In the example below, 2 lb and 10 kg of flour weights have been calculated. Depending on the desired weight unit, only one of the following four weight columns is used:

Baker's
percentage
weights
2 lb 10 kg
align=left ingredient  % lb oz kg g
align=left flour  100%  2 32 10  10000 
align=left water 35% 0.7 11.2 3.5 3500
align=left milk 35% 0.7 11.2 3.5 3500
align=left fresh yeast 4% 0.08 1.28 0.4 400
align=left salt 1.8%  0.036   0.576   0.18  180

Creating baker's percentages

The baker has determined how much a recipe's ingredients weigh, and uses uniform decimal weight units. All ingredient weights are divided by the flour weight to obtain a ratio, then the ratio is multiplied by 100% to yield the baker's percentage for that ingredient:

align=left ingredient   weight     × 100%
align=left flour 10 kg 10 kg ÷ 10 kg = 1.000 =100%
align=left water 3.5 kg 3.5 kg ÷ 10 kg = 0.350 =35%
align=left milk 3.5 kg 3.5 kg ÷ 10 kg = 0.350 =35%
align=left fresh yeast 0.4 kg 0.4 kg ÷ 10 kg = 0.040 =4%
align=left salt 0.18 kg 0.18 kg ÷ 10 kg = 0.018 =1.8%

Due to the canceling of uniform weight units, the baker may employ any desired system of measurement (metric or avoirdupois,[15] etc.) when using a baker's percentage to determine an ingredient's weight. Generally, the baker finds it easiest to use the system of measurement that is present on the available tools.

Formula percentage and total mass

Ingredient
[16]
baker's
%
true
%
align=left flour  100%   56.88% 
align=left water 35% 19.91%
align=left milk 35% 19.91%
align=left fresh yeast  4% 2.28%
align=left salt 1.8% 1.02%
align=right Total 175.8% 100%

The total or sum of the baker's percentages is called the formula percentage. The sum of the ingredient masses is called the formula mass (or formula "weight"). Here are some interesting calculations:

\begin{align} Formulamass&=Massflour x Formulapercentage\\

Formulamass
Formulapercentage

&=Massflour \end{align}

\begin{align} Massingredient&=Formulamass x Truepercentageingredient\\ Truepercentageingredient&=

Baker'spercentageingredient
Formulapercentage

x 100\%\\ Massingredient&=Formulamass x

Baker'spercentageingredient
Formulapercentage

\\ &=

Formulamass x Baker'spercentageingredient
Formulapercentage

\end{align}

Thus, it is not necessary to calculate each ingredient's true percentage in order to calculate each ingredient's mass, provided the formula mass and the baker's percentages are known.

\begin{align} Massingredient&=

Formulamass
Formulapercentage

x Baker'spercentageingredient\\ &=Massflour x Baker'spercentageingredient \end{align}

Formulamass x Truepercentageingredient=Massflour x Baker'spercentageingredient

Weights and densities

The use of customary U.S. units can sometimes be awkward and the metric system makes these conversions simpler. In the metric system, there are only a small number of basic measures of relevance to cooking: the gram (g) for weight, the liter (L) for volume, the meter (m) for length, and degrees Celsius (°C) for temperature; multiples and sub-multiples are indicated by prefixes, two commonly used metric cooking prefixes are milli- (m-) and kilo- (k-).[18] Intra-metric conversions involve moving the decimal point.[19]

Common avoirdupois and metric weight equivalences:

1 pound (lb) = 16 ounces (oz)

1 kilogram (kg) = 1,000 grams (g) = 2.20462262 lb

1 lb = 453.59237 g = 0.45359237 kg

1 oz = 28.3495231 g.

In four different English-language countries of recipe and measuring-utensil markets, approximate cup volumes range from 236.59 to 284.1 milliliters (mL). Adaptation of volumetric recipes can be made with density approximations:

Volume to mass conversions for some common cooking ingredients
ingredientdensity
g/mL
[20]
metric cup
250 mL
imperial cup
≈284 mL
U.S. customary cup
≈237 mL[21]
g ozgozgoz
water[22] 1[23] 249–2508.8283–28410236–2378.3[24]
granulated sugar0.8[25] 2007.02308.01906.7
wheat flour0.5–0.6120–1504.4–5.3140–1705.0–6.0120–1404.2–5.0
table salt1.230010.634012.028010.0

Due to volume and density ambiguities, a different approach involves volumetrically measuring the ingredients, then using scales or balances of appropriate accuracy and error ranges to weigh them, and recording the results. With this method, occasionally an error or outlier of some kind occurs.

Drawbacks

Baker's percentages do not accurately reflect the impact of the amount of gluten-forming proteins in the flour on the final product and therefore may need to be adjusted from country to country, or even miller to miller, depending on definitions of terms like "bread flour" and actual protein content.[26] Manipulation of known flour-protein levels can be calculated with a Pearson square.[27] [28] In home baking, the amounts of ingredients such as salt or yeast expressed by mass may be too small to measure accurately on the scales used by most home cooks. For these ingredients, it may be easier to express quantities by volume, based on standard densities. For this reason, many breadmaking books that are targeted to home bakers provide both percentages and volumes for common batch sizes.

Besides the need for appropriate readability scales, a kitchen calculator is helpful when working directly from baker's percentages.

Advantages

Baker's percentages enable the user to:

Common formulations

Common formulations for bread[29] include 100% flour, 60% water/liquid, 1% yeast, 2% salt and 1% oil, lard or butter.

Dough hydration

In a recipe, the baker's percentage for water is referred to as the "hydration"; it is indicative of the stickiness of the dough and the "crumb" of the bread. Lower hydration rates (e.g., 50 - 57%) are typical for bagels and pretzels, and medium hydration levels (58 - 65%) are typical for breads and rolls.[30] Higher hydration levels are used to produce more and larger holes, as is common in artisan breads such as baguettes or ciabatta. Doughs are also often classified by the terms stiff, firm, soft, and slack.[31] Batters are more liquid doughs. Muffins are a type of drop batter while pancakes are a type of pour batter.

Doughs
Very stiff< 57%
Stiff to firm57-65%
Soft 65-70%
Soft to slack 70-80%
Batters
[32]
Drop 95%
Pour 190%

External links

Notes and References

  1. Book: How Baking Works: Exploring the Fundamentals of Baking Science . Paula I. Figoni . Wiley . New York . 2010 . 9–11 . Baker's percentage—sometimes called formula percentage or indicated as "on flour weight basis"—is different from the percentages commonly taught in math classes. . 978-0-470-39267-6 . 2010-12-06.
  2. Book: Griffin, Mary Annarose . Gisslen, Wayne . Professional baking . 4th . John Wiley . New York . 2005 . 10 . 0-471-46427-9 . 2011-01-01.
  3. Book: BakeWise: The Hows and Whys of Successful Baking with Over 200 Magnificent Recipes . Corriher, Shirley . Scribner . New York . 2008 . 32 . 978-1-4165-6078-4 . 2010-12-09.
  4. Book: Handbook of food science, technology, and engineering . Hui, Yiu H. . Taylor & Francis . Washington, DC . 2006 . 16-6 . 0-8493-9849-5 . 2010-12-09.
  5. Book: The pastry chef's companion: a comprehensive resource guide for the baking and pastry professional . Laura Halpin Rinsky . Glenn Rinsky . John Wiley & Sons . Chichester . 2009 . 19 . 978-0-470-00955-0 . 2010-12-09.
  6. Book: Bread Baking: An Artisan's Perspective . Daniel T. DiMuzio . Wiley . New York . 2009 . 31 . 978-0-470-13882-3 . 2010-12-11.
  7. Book: Bread making: improving quality . Cauvain, Stanley P. . CRC Press . Boca Raton . 2003 . 475 . Generally the taste of yeast itself is not detectable in bread unless the amount of yeast used is greater than 2.5% based on the weight of flour. . 1-85573-553-9 . 2010-12-08.
  8. Book: Michele Marcotte . Hosahalli Ramaswamy . Food Processing: Principles and Applications . CRC . Boca Raton . 2005 . 14–15 . 1-58716-008-0 . 2010-12-25.
  9. Book: Gisslen, Wayne . Professional cooking . Sixth . John Wiley . New York . 2007 . 893 . 978-0-471-66376-8 . 2010-12-25.
  10. Book: Gisslen, Wayne . Professional baking . John Wiley . New York . 2009 . 24 . 978-0-471-78349-7.
  11. Book: Stanley P. Cauvain . Stanley P. Cauvain . Linda S. Young . BakeTran, High Wycombe, Buckinghamshire, UK . The ICC Handbook of Cereals, Flour, Dough & Product Testing: Methods and Applications . DEStech Publications, Inc . Lancaster, Pennsylvania . 2009 . 69 . Using Cereal Testing at Mill Intake" > "The Bulk Density of Grain (Hectolitre Mass, Bushel Mass, Test Weight, Specific Weight) . 978-1-932078-99-2 . 2010-12-26.
  12. Book: Wihlfahrt, Julius Emil . THE FLEISCHMANN CO. . A treatise on flour, yeast, fermentation and baking, together with recipes for bread and cakes . 1913 . 1905 . 25 . 2010-01-22.
  13. Derived algebraically from Gisslen's formula.
  14. Wf denotes a flour weight. In method 1 the percentage was divided by 100%. Method 2 works well when using a calculator. When using a spreadsheet, formatting the cell as percentage versus number automatically handles the per-cent portion of the calculation.
  15. Book: The baker's manual: 150 master formulas for baking . Rees, Nicole . Amendola, Joseph . J. Wiley . London . 2003 . 11 . 0-471-40525-6 . 2010-12-06.
  16. True percentage values have been rounded and are approximate.
  17. Book: Quartermaster Corps . Army baker . 1939 . U.S. Government Printing Office . Washington . Training Manual No. 2100-151 . 38–41 . 2012-02-07 . The sum of the percentages of ingredients used in any dough is commonly referred to as the formula percentage (168 percent in example in b above). The sum of the weights of ingredients used in a dough is commonly referred to as formula weight (462 pounds in example in c above)..
  18. Web site: The Metric Kitchen . 2010-11-30 . 2010-12-08 . https://web.archive.org/web/20101208061508/http://www.jsward.com/cooking/cooking-metric.shtml . live .
  19. Web site: Intra-metric Conversions . Doc . 2011-02-15 . dead . https://web.archive.org/web/20060916205441/http://teacherweb.ftl.pinecrest.edu/piersog/Regular/Worksheets/WS-Metric%20conversion.doc . 2006-09-16 .
  20. One gram per millilitre is very close to one avoirdupois ounce per fluid ounce: 1 g/mL ≈ 1.002 av oz/imp fl oz This is not a numerical coincidence, but comes from the original definition of the kilogram as the mass of one litre of water, and the imperial gallon as the volume occupied by ten avoirdupois pounds of water. The slight difference is due to water at being used for the kilogram, and at for the imperial gallon. The U.S. fluid ounce is slightly larger.

    1 g/mL ≈ 1.043 av oz/U.S. fl oz

  21. From cup (unit). Note the similarity of cup mL to water weight or mass as g. This density relationship can also be useful for determining unknown volumes.
  22. 1 g/mL is a good rough guide for water-based liquids such as milk (the density of milk is about).
  23. The density of water ranges from about 0.96 to 1.00 g/mL dependent on temperature and pressure. The table above assumes a temperature range 0C30C. The variation is too small to make any difference in cooking.
  24. Since an imperial cup of water weighs approximately 10 avoirdupois ounces and five imperial cups are approximately equal to six U.S. cups, one U.S. cup of water weighs approximately 8⅓ avoirdupois ounces.
  25. L. Fulton, E. Matthews, C. Davis: Average weight of a measured cup of various foods. Home Economics Research Report No. 41, Agricultural Research Service, United States Department of Agriculture, Washington, DC, 1977.
  26. Web site: KitchenSavvy: Flour Power? . 2010-12-09 . 2010-06-14 . https://web.archive.org/web/20100614221631/http://www.kitchensavvy.com/journal/2004/12/q_bread_recipes.html . live .
  27. Book: Hosahalli Ramaswamy . Amalendu Chakraverty . Mujumdar, Arun S. . Vijaya Raghavan . Handbook of postharvest technology: cereals, fruits, vegetables, tea, and spices . Marcel Dekker . New York, N.Y . 2003 . 263 . 0-8247-0514-9 . 2010-01-07.
  28. Book: Van Loon, Dirk . The family cow . Garden Way Pub . Charlotte, Vt . 1976 . 152 . 0-88266-066-7 .
  29. Book: Peter Reinhart's Artisan Breads Every Day . Reinhart, Peter . Ten Speed Press . Berkeley, Calif . 2009 . 207–209 . 978-1-58008-998-2 . 2010-12-09.
  30. Web site: SCS 020 Bread Classifications Stella Culinary . 2012-08-25 . 2023-01-08 . https://web.archive.org/web/20230108183105/https://stellaculinary.com/scs20 . live .
  31. Web site: Bakers Percentages - Revised . 2014-11-28 . 2014-12-03 . https://web.archive.org/web/20141203103913/http://www.theartisan.net/bakers_percentage_revised_2001.htm . live .
  32. Mathematically converted from liquid-to-dry volumetric ratios on quick bread. 1 cup water weighs 237 g, 1 cup all purpose flour, 125 g, rounding applied. It is worth noting that if the liquid is whole milk of 3.25% milkfat, which is somewhat common in pancake recipes, the actual water content or hydration is about 88% of that value per the USDA National Nutrient database, thus pancake hydrations may be as low as, or lower than, 167% or thereabouts (190% * 88%).