Bagger–Lambert–Gustavsson action explained

In theoretical physics, in the context of M-theory, the action for the N=8 M2 branes in full is (with some indices hidden):

S=\int{\left(-

1
2

D\muXID\muXI+

i
2

\overline{\Psi}\Gamma\muD\mu\Psi+

i
4

\overline{\Psi}\GammaIJ\left[XI,XJ,\Psi\right]-

1
12

\left[XI,XJ,XK\right]\left[XI,XJ,XK\right]+

1
2

\varepsilonabcTr(Aa\partialbAc+

2
3

AaAbAc)\right)}d\sigma3

where [, ] is a generalisation of a Lie bracket which gives the group constants.

The only known compatible solution however is:

\left[A,B,C\right]η\equiv\varepsilon\mu\nu\tauηA\muB\nuC\tau

using the Levi-Civita symbol which is invariant under SO(4) rotations. M5 branes can be introduced by using an infinite symmetry group.

The action is named after Jonathan Bagger, Neil Lambert, and Andreas Gustavsson.[1] [2] [3]

References

Notes and References

  1. Bagger . Jonathan . Lambert . Neil . Modeling multiple M2-branes . Physical Review D . 75 . 4 . 2007-02-26 . 1550-7998 . 10.1103/physrevd.75.045020 . 045020. hep-th/0611108. 2007PhRvD..75d5020B . 119483842 .
  2. Gustavsson . Andreas . Algebraic structures on parallel M2 branes . Nuclear Physics B . 811 . 1–2 . 2009 . 0550-3213 . 10.1016/j.nuclphysb.2008.11.014 . 66–76. 0709.1260. 2009NuPhB.811...66G . 8856345 .
  3. Bagger . Jonathan . Lambert . Neil . Gauge Symmetry and Supersymmetry of Multiple M2-branes . Physical Review D . 77 . 2008-03-07 . 6 . 10.1103/PhysRevD.77.065008. 065008. 0711.0955 . 2008PhRvD..77f5008B . 14988717 .